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Abstract:
The application of quadcopter and intelligent learning 
techniques in urban monitoring systems can improve 
flexibility and efficiency features. This paper proposes 
a cloud-based urban monitoring system that uses deep 
learning, fuzzy system, image processing, pattern rec-
ognition, and Bayesian network. The main objectives of 
this system are to monitor climate status, temperature, 
humidity, and smoke, as well as to detect fire occur-
rences based on the above intelligent techniques. The 
quadcopter transmits sensing data of the temperature, 
humidity, and smoke sensors, geographical coordi-
nates, image frames, and videos to a control station 
via RF communications. In the control station side, the 
monitoring capabilities are designed by graphical tools 
to show urban areas with RGB colors according to the 
predetermined data ranges. The evaluation process il-
lustrates simulation results of the deep neural network 
applied to climate status and effects of the sensors’ 
data changes on climate status. An illustrative example 
is used to draw the simulated area using RGB colors. 
Furthermore, circuit of the quadcopter side is designed 
using electric devices.

Keywords: urban monitoring, cloud computing, quad-
copter, deep learning, fuzzy system, image processing, 
pattern recognition, bayesian network, intelligent tech-
niques, learning systems

1. Introduction
Urban monitoring systems are essential application 
tools in today’s world. A wide range of urban moni-
toring applications is evident proof of growing inter-
est in this field. These systems can be designed and 
implemented by using various electromechanical 
devices such as sensors, off-the-shelf cameras, and 
microphones. For example, available parking can 
be tracked in a metropolitan area and urban traffic 
can be controlled by monitoring tools. Existing ur-
ban monitoring solutions are primarily composed of 
static sensor deployment and pre-defined communi-
cation/software infrastructures. Therefore, they are 
hardly scalable and are vulnerable when conducting 
their assigned purposes [1–3].

A quadcopter – namely multirotor, quadrotor, or 
drone – is a simple flying electromechanical vehicle 

that is composed of four arms and a motor attached 
to the propeller on each arm. Two rotors turn clock-
wise, and the other two turn counterclockwise. 
A flight computer or controller can be applied to 
convert the operator’s commands into the desired 
motion. Quadcopters can be equipped with various 
electromechanical devices (e.g., sensor and cam-
era) to gather the data on phenomena in urban ar-
eas [4–6].

Quadcopters transmit big data to the monitoring 
servers. These big data should be stored as a data-
base so various results can be derived according to 
the reported information. Cloud computing offers 
the main support for targeting the primary chal-
lenges with shared computing resources (e.g., com-
puting, storage, and networking). The application of 
these computing resources has performed impres-
sive big data advancements [7–10].

Most existing urban monitoring systems [21–24] 
consist of stationary devices on urban fields. This 
feature inhibits system flexibility, and operational 
costs are noticeably enhanced. The application of a 
quadcopter with the aid of cloud computing, image 
processing [11], and intelligent learning systems 
(such as deep learning [12, 13], deep neural network 
[14], fuzzy decision making [15–18], pattern recog-
nition [19], and Bayesian network [20]), can consid-
erably improve the efficiency of existing monitoring 
systems. A cloud-based urban monitoring system is 
proposed in this paper based on using a quadcop-
ter and intelligent learning systems. It uses sensing 
data of the temperature, humidity, and smoke sen-
sors to determine climate status via deep learning. 
The system uses geographic coordinates and sensing 
data to conduct the climate, temperature, humidity, 
and smoke monitoring using fuzzy systems, image 
processing, and RGB colors. Pattern recognition and 
Bayesian networks are also applied to detect fire 
occurrence over urban areas. It seems that the pro-
posed system can improve the existing urban moni-
toring systems.

Section 2 represents a literature review of the ex-
isting urban monitoring systems. Section 3 describes 
units and strategies of the proposed cloud-based ur-
ban monitoring system. Section 4 evaluates the pro-
posed deep learning unit, monitoring tools, and the 
detection of fire occurrence. Section 5 provides circuit 
design of the quadcopter side by using electric devic-
es. Finally, the paper is concluded in Section 6. 
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2. Literature Review
Calabrese et al. [21] have described a real-time urban 
monitoring system using the Localizing and Handling 
Network Event Systems (LocHNESs) platform. The 
system is designed by Telecom Italia for the real-time 
analysis of urban dynamics according to the anony-
mous monitoring of mobile cellular networks. The in-
stantaneous positioning of buses and taxis is utilized 
to give information about urban mobility in real-time 
situations. This system can be used for monitoring a 
variety of phenomena in different regions of cities, 
from traffic conditions to the movements of pedestri-
ans.

Abraham and Pandian [22] have presented a low-
cost mobile urban environmental monitoring system 
based on off-the-shelf open-source hardware and 
software. They have developed the system in such a 
way that it can be installed or applied in public trans-
port vehicles, especially in the school and college 
buses in various countries (e.g., India). Moreover, a 
pollution map of the local and regional areas can be 
provided from the gathered data in order to enhance 
the awareness of urban pollution problems.

Lee et al. [23] have applied wireless sensor net-
works, Bluetooth sensors, and Zigbee transceivers 
to provide a low-cost and energy-saving urban mo-
bility monitoring system. The Bluetooth sensor cap-
tures MAC addresses of the Bluetooth units which 
are equipped in car navigation systems and mobile 
devices. The Zigbee transceiver then transmits the 
gathered MAC addresses to a data center without us-
ing any fundamental communication infrastructures 
(e.g., 3G/4G networks).

Shaban et al. [24] have presented a monitoring 
and forecasting system for urban air pollution. This 
system applies the low-cost, air-quality monitoring 
motes which are equipped with gaseous and meteor-
ological sensors. The modules receive and then store 
the data, convert the data into useful information, 
predict the pollutants with historical information, and 
finally address the collected information via various 
channels (e.g., mobile application). Moreover, three 
machine learning algorithms are utilized to construct 
accurate forecasting models.

3.    The Proposed Cloud-Based Urban 
Monitoring System

The proposed monitoring system provides various 
monitoring features including climate, temperature, 
humidity, and smoke monitors, and the detection of 
fire occurrence. First, a quadcopter – flying over ur-
ban areas – transmits temperature, humidity, smoke, 
geographical coordinates, image, and video data to-
ward a control station in a specified period of time. 
Then, the control station conducts the above monitor-
ing features by using deep learning, fuzzy systems, 
image processing, pattern recognition, and Bayesian 
networks based on the data transmitted from the 
quadcopter. It uses a software framework via graphi-
cal tools to manage tasks created by the monitoring 

purposes. This section describes units and strategies 
of this system.

3.1. System Model
In the supposed model, a quadcopter flies over urban 
areas based on the flight control system presented by 
Zhao and Go [25] in order to gather various phenom-
enal data including temperature, humidity, smoke, 
geographical coordinates, images, and videos. The 
quadcopter is equipped with different sensors and 
electromechanical devices such as temperature sen-
sor, Global Positioning System (GPS), and camera. It 
transmits the sensed data toward a control station 
(e.g., a laptop) via RF communications in a specified 
period of time. The control station stores the received 
data in a MongoDB cloud database. Upon receiving 
the data from the quadcopter, it calculates the cli-
mate status, monitors four environmental conditions 
by graphical tools, and detects fire occurrence based 
on the phenomena data. The sensing data range of 
temperature sensor is (0, 80) °C, humidity sensor is 
(0, 100) % RH, and smoke sensor is (10, 10000) ppm. 
Note that some of the temperature sensors sense a 
heat data below 0 °C and/or higher than 80 °C. Thus, 
the system model only considers the sensing data in 
the range of (0, 80) °C. Fig. 1 represents the schematic 
model of the proposed monitoring system.

Transmit te
mperature, humidity, sm

oke, geographical coordinates, 

image, and video data via RF communications

Control station

Deep learning

Temperature

Humidity

Smoke

Climate status

Image processing

Fuzzy system

GPS

Climate monitor

Temperature monitor

Humidity monitor

Smoke monitor

Pattern recognition and 
Bayesian networkImage and video Fire occurrence

Fig. 1. Schematic model of the proposed monitoring 
system

3.2.  Calculation of the Climate Status by Deep 
Learning

Deep neural network [26, 27] can give a deep learning 
feature to the proposed system. It leads to the climate 
status to be determined precisely based on the input 
data. In this unit, temperature, humidity, and smoke are 
the input data, while climate status is the output data. 
Fig. 2 illustrates a deep neural network to calculate 
quantitative value of the climate status in the range of 
(0, 100) %. Each neuron uses a Perceptron function [28] 
to transmit an appropriate value to the next layer based 
on the values received from previous layer, as below
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where n is number of neurons and b is bias. The 
weights between neurons at the subsequent layers 
are determined in the network based on experimen-
tal results and human experiences.
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Fig. 2. Schematic of a deep neural network to calculate 
climate status

The value of climate status can be calculated as 
follows

21 31 22 32 23 33 3x 100 (x w x w x w b ) 100tCS = × = + + + ×

where wijs are determined after the learning process 
of the neural network.

Note that the normalized value of each neuron at 
the input layer can be determined as

, ,T H S
T H S

T H Sx x x
Max Max Max

=   =   =

Consequently, climate status is calculated as

31 32 33 3(w w w ) 100
T H S

T H SCS b
Max Max Max

= + + + ×
  

(2)
where T is temperature data, MaxT is the maximum 
sensing data of the temperature sensor, H is humidity 
data, MaxH is the maximum sensing data of the humid-
ity sensor, S is smoke data, MaxS is the maximum sens-
ing data of the smoke sensor, wijs are the weights of 
output layer, and b3 is the bias value. As represented 
in the above calculations, quantitative amounts of the 
weights and biases are defined in a way that the com-
plexity of all equations is reduced noticeably. If climate 
status is low then environmental condition is favor-
able; otherwise, environmental condition is critical.

3.3. Monitoring Tools Using Fuzzy System and 
Image Processing

Monitoring system consists of four monitoring 
tools: climate monitor, temperature monitor, hu-

midity monitor, and smoke monitor. Monitoring re-
sults are carried out based on data transmissions of 
the quadcopter and geographical coordinates. Cli-
mate monitor is illustrated for various regions on 
the urban areas, while the other monitors are done 
for each point on the areas via a point-to-point pro-
cess.

Climate monitors are an essential monitoring tool 
in urban management systems. It can depict climate 
conditions of all locations. The climate monitor of the 
proposed system is conducted for various regions on 
the map. That is, the whole map is categorized into 
various regions so that each region has a unique cli-
mate status. First, a unique status is determined for 
each region by a proposed fuzzy system. Then, every 
region will be shown by an RGB color, based on the 
unique climate status through an image processing 
phase. Note that the dimensions of every region – in 
this system – are considered to be 100 × 100 points. 
The input variables of the fuzzy system are “Number 
of repeats” and “Distance to mean.” The output vari-
able of the system is “Selection rate” as illustrated in 
Fig. 3. Universe of discourse for “Number of repeats” 
and “Distance to mean” is {0, 2500, 5000, 7500, 
10000}, while universe of discourse for “Selection 
rate” is {0, 25, 50, 75, 100}. Linguistic terms of “Num-
ber of repeats” are {“Few”, “Normal”, “Many”}, linguis-
tic terms of “Distance to mean” are {“Near”, “Medio-
cre”, “Far”}, and linguistic terms of “Selection rate” are 
{“Low”, “Medium”, “High”}. Membership functions of 
the inputs are determined by the triangular function 
and membership functions of the output are specified 
by the bell-shaped function [29]. Moreover, rule-mak-
ing process is performed by the Mamdani-type fuzzy 
system [30]. Table 1 represents IF-THEN rules of the 
fuzzy system.
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Fig. 3. Main elements of the proposed fuzzy system

Table 1. IF-THEN fuzzy rules of the proposed fuzzy 
system

Rule 
#

Input variables Output variable

Number of 
repeats

Distance to 
mean

Selection rate

1 Few Near Medium

2 Few Mediocre Low

3 Few Far Low

4 Normal Near Medium

5 Normal Mediocre Medium

6 Normal Far Low

7 Many Near High

8 Many Mediocre High

9 Many Far Medium
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Fuzzification
Fuzzification converts real numbers as well as linguis-
tic terms to fuzzy sets. That is, it specifies MFs of the 
inputs and the output. The triangular function is cal-
culated as below:

triangular (x; a, m, b) = 

≤
 − − < ≤
 − − < <
 ≥

0
( ) / ( )
( ) / ( )
0

x a
x a m a a x m
b x b m m x b

x b

       

(3)
where x indicates a member of the universe of dis-
course, a represents the lower limit, b indicates the 
upper limit, and m represents the center of triangle. 
The bell-shaped function is determined as following

bell shapd (x; a, b, c) = 
−

+
2

1

1
bx c

a

 (4)

where x indicates a member of the universe of dis-
course, c and a adjust the center and width of the 
membership function, and b represents the slope at 
the cross points.

Rule Base
The relation between the inputs and the output in the 
proposed fuzzy system is expressed in terms of a set 
of the IF-THEN fuzzy rules listed in Table 1.

Inference Engine
As mentioned before, the inference engine in the pro-
posed fuzzy system applies the Mamdani-type system. 
It performs based on the given rule base as follows:
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where Aj , Bj , and Cj indicate the MFs of the inputs and 
the output applied in the fuzzy rules, R represents the 
total rule of the fuzzy rules, Rj indicates a fuzzy rule in 
the rule base, m represents the number of fuzzy rules, 
A’ and B’ indicate the membership grades of two in-
puts fed from the input parameters, and C’ represents 
the membership grade of the output determined 
based on the inputs’ values.

Defuzzification
The center-of-gravity method is used to specify crisp 
value of a fuzzy output, as below
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∑
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T i i
i
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T i
i

                       (6)

where xi is a member of the output universe of dis-
course, μT(xi) is the membership degree of xi, and p 
is the number of members in the output universe of 
discourse [31–37].

Algorithm 1 represents how to select an appropri-
ate climate status for each region. Lines 1 to 4 define 
initial variables of the procedure. Line 8 calculates 
average climate status of each region based on the 
values of CS. Line 9 determines number of repeats 
and line 10 determines distance to mean of all climate 
statuses at current region in the range of [0, 100]. Af-
terward, line 11 calculates success rate of the climate 
statuses using the fuzzy system. Finally, lines 12 to 14 
select an appropriate climate status, set the status-
es of all points to the selected status, and depict the 
whole region by an RGB color based on the selected 
climate status.

Table 2 indicates four RGB colors that are deter-
mined for climate statuses. These colors are used to 
illustrate all regions via image processing. All climate 
statuses are categorized into four terms to draw re-
gions with an appropriate RGB color based on the se-
lected status.

Temperature, humidity, and smoke monitors are 
other tools in the proposed monitoring system that 
will be conducted based on sensing data of the quad-
copter’s sensors. They are managed by a point-to-
point process to draw each point on the map by image 
processing techniques. Table 3 represents how to se-
lect an appropriate RGB color for every point based 
on sensing data of the temperature, humidity, and 
smoke sensors.

Algorithm 1. Climate monitor of the urban areas

1: L ← Length of the area

2: W ← Width of the area

3: CS[1.. L][1..W] ← Climate status of all the points

4: i ← 1

5: While (i < L){

6:     j ← 1

7:     While (j < W){

8:
        Avg ← Average climate status of the CS[i..i+99][j..
j+99]

9:         NR[1..100] ← Number of repeats

10:         DM[1..100] ← Distance to mean

11:         SR[1..100] ← Success rate

12:         Select the climate status with the most success rate

13:         Set all points of current region to the selected status

14:
        Depict the region by the RGB color associated to the 
selected status

15:         j ← j + 100

16:     }

17:     i ← i + 100

18: }

3.4. Detection of Fire Occurrence via Pattern 
Recognition and Bayesian Network 

The proposed system applies the fire detection al-
gorithm presented by Ko et al. [38] by using irregular 
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patterns of flames and hierarchical Bayesian network. 
Fig. 4 shows various elements and steps of this detec-
tion algorithm. The overall system is divided to two 
main steps: pre-processing step and fire verification 
step. In the pre-processing step, input image is ana-
lyzed after using the adaptive background subtraction 
and color probability models. The image can be ob-
tained based on the image and/or video data trans-
mitted from the quadcopter.

Table 2. RGB color of the selected climate status in 
climate monitor

Climate 
status (%)

Climate term Color RGB color

[0..20] Excellent RGB(78, 97, 40)

[21..50] Good RGB(118, 146, 60)

[51..80] Critical RGB(194, 214, 155)

[81..100] Emergency RGB(214, 227, 188)

Table 3. RGB color of sensing data in the temperature, 
humidity, and smoke monitors

Type Sensing data Term Color RGB color

Temperature
monitor

[0..5] °C Cold
RGB 

(192, 0, 0)

[6..20] °C Cool
RGB 

(255, 0, 0)

[21..35] °C Moderate
RGB 

(255, 101, 101)

[36.. 80] °C Hot
RGB 

(255, 175, 175)

Humidity 
monitor

[0..15] % RH Dry
RGB 

(0, 0, 164)

[16..40] % RH Medium
RGB 

(0, 0, 255)

[41..70] % RH Wet
RGB 

(71, 71, 255)

[71..100] % 
RH

Very wet
RGB 

(139, 139, 255)

Smoke
monitor

[10..1000] 
ppm

Low 
density

RGB 
(0, 0, 0)

[1001..3000] 
ppm

Normal
RGB 

(64, 64, 64)

[3001..6000] 
ppm

Noticeable
RGB 

(128, 128, 128)

[6001..10000] 
ppm

High 
density

RGB 
(180, 180, 180)

Input image

Adaptive background 
subtraction model

Color probability model

Candidate 
pixels?

Reject

Skewness estimation from 
four features

Probability density 
estimation with skewness

Fire pixel verification by 
Bayesian network

Probability > 
threshold?

No

Yes

Yes
No

Pre-processing stepFire verification step

Fire

Fig. 4. A work flow for the detection algorithm of 
fire occurrence by pattern recognition and Bayesian 
network [38]

Afterward, if pixels are selected in the candidate 
process then they will be forwarded to the next step; 
otherwise, the current process of system will be ter-
minated. In the fire verification step, skewness esti-
mation uses four fire features to evaluate the pixels 
of input image. Then, probability density is estimated 
by skewness, and fire pixels are verified by a Bayes-
ian network. If the probability is greater than a pre-
defined threshold value then the fire occurrence will 
be detected; otherwise, the analysis process will be 
rejected.

4. Evaluation Results
This section evaluates the efficiency of some units 
that are considered in the proposed monitoring sys-
tem, including deep learning, monitors, as well as pat-
tern recognition and Bayesian networks. Simulation 
results are carried out according to the proposed sys-
tem model. However, some of the simulation param-
eters are changed in some cases to demonstrate the 
difference between various scenarios.

Fig. 5 shows an instance of the simulation results 
for the proposed deep neural network. The results are 
carried out in 2500 points for the temperature, hu-
midity, and smoke sensors. Moreover, climate status 
is calculated for these points based on sensing data 
of the sensors. It is evident that, in most of the points, 
climate status is critical because the temperature, hu-
midity, and smoke data are high.
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Fig. 5. Simulation results of the deep neural network in 
the deep learning unit

Fig. 6 illustrates effects of the temperature, humid-
ity, and smoke changes on climate status in the deep 
learning unit. Default values of the temperature, hu-
midity, and smoke sensors are considered to be equal 
to 30 °C, 50% RH, and 4000 ppm, respectively. As in-
dicated by the simulation results, these changes are 
harmonic for all the sensors. The reason is that effects 
of the temperature, humidity, and smoke sensors on 
climate status are linear. Since the default values of 
sensors are not supposed very low, the minimum cli-
mate status is 25.
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Fig. 6. Effects of the temperature, humidity, and smoke 
changes on climate status

Fig. 7 illustrates an example of the simulation 
results that are carried out by the temperature, hu-
midity, and smoke monitors. The simulation process 
is conducted in an urban area with the dimensions of 
1500 × 500 points. It considers only 20 instances of 
the temperature, humidity, and smoke data that are 
transmitted from the quadcopter and then are stored 
in the MongoDB database. Each instance is painted by 
a RGB color, according to the descriptions in Table 3. 

In most cases, simulation results indicate that tem-
perature is hot, humidity is medium, and smoke has 
high density.

As represented before, the pattern recognition 
and Bayesian network unit uses a file detection algo-
rithm that is presented by Ko et al. [38]. This work is 
compared to Töreyin’s method [39] and Ko’s method 
[40] in terms of true positive and detection speed, as 
indicated by Table 4. Comparison results demonstrate 
that, in most video sequences, the true positive of the 
considered work is more than that of the other works. 
Besides, average frames per second obtained by this 
work is more than the average frames obtained by  
Töreyin’s and Ko’s methods. Therefore, performance 
of the fire detection process – which is applied in the 
proposed system – is better than that of most existing 
related works.

5. Circuit Design of the Quadcopter Side
The quadcopter is composed of various electrome-
chanical devices to reach the predefined goals. Fig. 8 
depicts the main electronic devices, especially sen-
sors, of the circuit in the quadcopter side, which is 
designed and simulated in Proteus Pro 8.4 SP0 Build 
21079. An ATmega32 microcontroller is used as the 
main controller to manage the input and output de-
vices. All of the sensors are connected to the micro-
controller via port A. LM35DZ temperature sensor is 
connected to pin 0, SHT11 humidity sensor is con-
nected to pins 1 and 2, and a MQ-2 gas sensor is con-
nected to pin 3.
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Fig. 7. Simulation results of the image processing unit in 
the temperature, humidity, and smoke monitors
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Fig. 8. Main electronic devices of the circuit in the 
quadcopter side

Table 4. Comparison results of the pattern recognition 
and Bayesian network unit in terms of true positive 
and detection speed [38]

Video 
sequence

True positive
(Percentage)

Detection speed
(Frames per second)

Th
e 

co
ns

id
er

ed
 

w
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k

Tö
re

yi
n’

s 
m

et
ho

d

Ko
’s 

m
et
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Th
e 
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ns
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w
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k

Tö
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n’

s 
m
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d

Ko
’s 

m
et

ho
d

Movie 1 55 8 68 17.7 13.5 7.3
Movie 2 96 65 80 14.8 12.6 5.9
Movie 3 99 80 95 12.6 17.4 1.9
Movie 4 95 20 85 7.99 13.3 0.4
Movie 5 98 58 84 13 13.2 1.5
Movie 6 100 76 95 13.5 14 1.2
Movie 7 95 50 72 14.8 12.8 4.7
Movie 8 100 100 100 15.8 13.1 10.7
Movie 9 100 100 100 15.9 13.4 10.6

Movie 10 100 100 100 15.9 13.7 10.7
Movie 11 99 100 100 16 12.8 10.7
Movie 12 100 100 100 9.5 11.2 5.4
Average 95.3 72 88.6 14.0 13.4 5.9

6. Conclusions
A cloud-based urban monitoring system was pro-
posed in this paper that uses a quadcopter and 
some of the intelligent learning systems. The quad-
copter utilizes the temperature, humidity, and 
smoke sensors in addition to a camera and Global 
Positioning System (GPS) to transmit the phenom-
ena data to a control station. All data are stored in 
a MongoDB cloud database to maintain all environ-
mental conditions of the urban areas. This system 
is composed of several units including deep learn-
ing, fuzzy systems, and image processing, as well as 

pattern recognition and Bayesian networks. The deep 
learning unit calculates climate status based on the 
sensing data of all the sensors. It uses a deep neural 
network to determine an appropriate status accord-
ing to the pre-defined weights. The system controls 
four monitors to graphically illustrate conditions of 
the urban areas: climate monitor, temperature moni-
tor, humidity monitor, and smoke monitor. The climate 
monitor is designed by a fuzzy system, image process-
ing techniques, and RGB colors. The suggested fuzzy 
system consists of two inputs, namely “number of re-
peats” and “distance to mean”, as well as one output, 
namely “selection rate”. In contrast, the other monitors 
only use image processing techniques and RGB colors 
to show the temperature, humidity, and smoke data by 
means of graphical tools. Finally, the pattern recogni-
tion and Bayesian network unit detects the fire occur-
rence by using irregular patterns of flames and hierar-
chical Bayesian network.

Evaluation results were carried out based on the 
simulation results of deep learning, all the graphical 
monitors, as well as pattern recognition and Bayesian 
network. The results obtained by algorithm of the last 
unit are compared to some of the existing fire detection 
algorithms in terms of true positive and detection speed. 
Comparison results indicate that it has a high efficiency 
in most implemented cases. The main electronic circuit 
of the quadcopter side is designed and simulated in Pro-
teus Pro 8.4 SP0 Build 21079.
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