
VOLUME 16, N° 1 2022
Journal of Automation, Mobile Robotics and Intelligent Systems

A SCALABLE TREE BASED PATH PLANNING FOR A SERVICE ROBOTA SCALABLE TREE BASED PATH PLANNING FOR A SERVICE ROBOTA SCALABLE TREE BASED PATH PLANNING FOR A SERVICE ROBOTA SCALABLE TREE BASED PATH PLANNING FOR A SERVICE ROBOT

Submitted: 23rd November 2021; accepted: 8th February 2022

A. A. Nippun Kumaar, Sreeja Kochuvila, S. R. Nagaraja

DOI: 10.14313/JAMRIS/1‐2022/4

Abstract:
Path planning plays a vital role in a mobile robot navi‐
gation system. It essentially generates the shortest tra‐
versable path between two given points. There are many
path planning algorithms that have been proposed by re‐
searchers all over the world; however, there is very little
work focussing on path planning for a service environ‐
ment. The general assumption is that either the environ‐
ment is fully known or unknown. Both cases would not
be suitable for a service environment. A fully known en‐
vironment will restrict further expansion in terms of the
number of navigation points and an unknown environ‐
ment would give an inefficient path. Unlike other envi‐
ronments, service environments have certain factors to
be considered, like user‐friendliness, repeatability, sca‐
lability, and portability, which are very essential for a
service robot. In this paper, a simple, efficient, robust,
and environment‐independent path planning algorithm
for an indoor mobile service robot is presented. Initially,
the robot is trained to navigate to all the possible desti‐
nations sequentially with a minimal user interface, which
will ensure that the robot knows partial paths in the en‐
vironment. With the trained data, the path planning al‐
gorithm maps all the logical paths between all the des‐
tinations, which helps in autonomous navigation. The al‐
gorithm is implemented and tested using a 2D simulator
Player/Stage. The proposed system is tested with two dif‐
ferent service environment layouts and proved to have
features like scalability, trainability, accuracy, and repe‐
atability. The algorithm is compared with various classi‐
cal path planning algorithms and the results show that
the proposed path planning algorithm is on par with the
other algorithms in terms of accuracy and efficient path
generation.

Keywords: Learning fromDemonstration, pathmapping,
path planning, navigation system, mobile robot, service
robot

1. Introduction
Mobile service robots have been getting popular

in the last decade in the consumer electronics ϐield.
They are used in service environments like homes, of‑
ϐices, hospitals, hotels, museums, etc. The major rea‑
son for this popularity is that they are operated au‑
tonomously and help users with day‑to‑day tasks. An
inherent part of any kind (wheeled, legged, airborne,
etc.) of a mobile service robot is the navigation sy‑
stem. A navigation system is a key element in ma‑
king a service robot autonomous. It helps the ro‑

bot to navigate from a given source to a destination
autonomously. A navigation system is composed of
subsystems like localization, which locates the robot
in the environment, path planning, used to plan the
path between two points, obstacle avoidance, to na‑
vigate in a dynamic environment, etc. Overall, auto‑
nomous service robots can be classiϐied into two ty‑
pes: environment‑dependent, and environment inde‑
pendent. Environment‑dependent robots use onboard
sensors (sensors in the robot’s chassis) and off‑board
sensors (sensors placed in the environment) for navi‑
gation. Environment independent robots use only on‑
board sensors for navigation and thus environment
portability is possible.

The service environment demands that the ro‑
bot traverse a path repeatedly, increasing the num‑
ber of locations drastically and that even a novice user
should be able to handle the robot andmove from one
service environment to another without any expert
help. In this work, a path‑planning architecture for a
wheeled mobile robot deployed in a service environ‑
ment with all the aforementioned key factors is pro‑
posed. The proposed algorithm is generic in nature,
which caters to the needs of various service environ‑
ments. Service environments targeted are those with
large carpeted area, devoid of any kind of environment
augmentation. Overall work is divided into two pha‑
ses: the Learning fromDemonstration (LfD) phase and
the path planning phase. In the LfD phase, the robot is
taught all the possible destinations sequentially with
a minimal user interface, which gives a partial under‑
standing of the paths available. In the path planning
phase, a complete path tree is generated by mapping
all the possible logical paths among possible destinati‑
ons and navigating in the shortest path possible auto‑
nomously. These logical paths are totally based on the
learnt paths in the LfD phase.

The remainder of the article is organized as fol‑
lows. Section 2 highlights the state of art in the LfD
and path‑planning ϐield. The proposed LfD and path‑
planning algorithm are described in section 3. Section
4 presents the result and analysis, and a comparison
with various classical approaches. Section 5 concludes
the work.

2. Related Work
Research on LfD in robotics started in the early

1970’s and has grown signiϐicantly during the past de‑
cade [19]. The main aim for LfD is to train a robot
to perform a task rather than programming it. Main
advantages are user‑friendliness and environmental

2022 ® Nippun Kumaar et al. This is an open access article licensed under the Creative Commons Attribution-Attribution 4.0 International (CC BY 4.0)
(https://creativecommons.org/licenses/by-nc-nd/4.0) 31

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

portability. To program a robot, an expert is required,
whereas to teach a robot, a novice user will be able to
do it. The robot can be ported to any environmentwith
an overhead of just training for the new environment;
this would reduce both time and cost. Initially, the ro‑
bot is manually trained by a human to perform a task.
Training can be done using various tools like teaching
pendant [3] camera‑based learning, or imitation lear‑
ning [14]. Most of the initial work in robotics LfD is for
industrial manipulators [13, 25]. For the past decade,
LfD has been used inmobile robots to perform speciϐic
navigation tasks like traversing a corridor or passing
a doorway [32,40].

The robot learns by storing the on‑board and off‑
board sensors’ data, and it is used to perform the le‑
arnt task autonomously. There have been a lot of rese‑
arch advancements on processing the learnt data and
using it efϐiciently in autonomousmode. In [8], a nonli‑
near regressionmodel to identify the relationship bet‑
ween onboard sensors and actuators while training is
proposed. A set of library tasks is taught, and these li‑
brary tasks are used in the autonomous phase in [13].
In article, [6], feedback in terms of the advice operator
is given to the robot by the user based on task learned.
This allows the trainer to correct the robot in real time.
While in all the aforementioned literature, the trainer
and the robot are in the same place, in [36], a remote
training algorithm using the Web is proposed. A tour
guide robot in [2] is trained to all possible paths by fol‑
lowing a trainer and stores the poses as route parame‑
ters. In [17], a different approach of training a robot in
a static environment and execution in a dynamic envi‑
ronment is proposed.

The LfD ϐield has developed rapidly since its incep‑
tion, but there is no one general technique that can
be used in different domains of robotics. Most appro‑
aches are tested using only a single domain with one
or a few tasks on a single robotic platform. This is the
primary reason for the lack of comparisons between
algorithms. Most of the work done in LfD is on indus‑
trial manipulators. It is not possible to use the same
technique in mobile robots, as the learning parame‑
ters and teaching approach differ for both platforms.
Existing LfD systems heavily depend upon ofϐboard
sensors like the camera, wearable sensors for trainer,
etc., which is not suitable for a service environment.

Path planning is an active research area with a
lot of scope for advancements. Earlier path planning
algorithms have been used in the ϐields of compu‑
ter networks, circuit board design, etc. Lately they
have been extensively used in the ϐield of mobile ro‑
botics. Path planning is identifying the shortest path
between a given source and destination. Overall path
planning techniques can be categorized based on the
environmental awareness of the robot, with known,
unknown, and partially known environments [31].
The main prerequisite for known‑environment path
planning is that the environment map has to be pre‑
loaded, no dynamic changes in the environment are
possible, and that it will plan the shortest path avai‑
lable. In unknown‑environment path planning, the ro‑

bot perceives the environment using sensors anddeci‑
des upon the shortest path, and this canwork in dyna‑
mic environments. Partially known environment path
planning is a combination of both the aforementioned
types; thisworks in a dynamic environment, and at the
same time the shortest possible path is identiϐied.

Classical heuristic search path planning algo‑
rithms like Dijkstra’s [11] and A* [21] are based on
path planning with known environments. A* is based
on Dijkstra’s algorithm, with a more focussed search
towards optimal states. These algorithms can iden‑
tify an optimal path between the start and endpoint.
While these algorithms work well in a static known
environment, they fall short in dynamic unknown en‑
vironments where the path is planned based on the
onboard sensors in real time. Algorithms like the mo‑
tor schema‑basedapproach [4,23], potential ϐieldmet‑
hod [24], improved potential ϐield method [27], artiϐi‑
cial potential ϐield method [43], modiϐied ϐlexible vec‑
tor ϐield method [22] are used in some of the earlier
literature for unknown environments. Techniques like
D* [41] and Field D* [15] belong to this category. The
D* algorithm is based on the A* algorithm but with
dynamic replanning capability. Algorithms like conju‑
gate gradient descent, improved potential ϐield, or D*
Lite [12, 46, 47] use known path planning algorithms
like A* deliberative planning technique and use re‑
planning locally if required.

Some techniques can’t be categorized into one of
the aforementioned classes. Visibility binary tree [39]
is one such technique that can be used in known or
unknown environments. Thismethod creates a binary
tree of free space and obstacles to plan the path to‑
wards the goal. Some other popular techniques are
coverage‑based path planning [16] and rapidly explo‑
ring random trees (RRT) [29]. RRT generates paths
with local constraints using probability. Another work
[18] uses probability for its navigation function, along
with Gaussian probability distribution for locations of
obstacles and the robot in the environment. In [42]
the problem of convergence time in a cluttered en‑
vironment by bi‑directional RRT* and intelligent bi‑
directional RRT* is discussed. The authors propose a
potentially guided bidirectional tree, which improve
the convergence rate. A predictive algorithm to avoid
dynamic and static obstacles using the range sensors
in the robot is discussed in [26]. The predictive algo‑
rithms predict the velocity vectors of the dynamic ob‑
stacles and plan a collision‑free path towards the goal.
Article [7] discusses a nonparametric motion control‑
ler using Gaussian process regression for trajectory
prediction. Predicted trajectories, along with the ro‑
bot’s limited perception, are used for robot motion
control. In [45], a SLAMalgorithmbasedonparticle ϐil‑
ter optimization is discussed. Image processing‑based
navigation techniques are also explored extensively,
and in [44], a dynamic landmark identiϐication system
using the visual servo method is proposed.

With the latest advancements in soft computing
techniques, extensive research on applying it to robo‑
tic path planning is being carried out. In [20], path

32

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

planning in a partially known environment is presen‑
ted. Initially, an ofϐline path plannerwill plan the paths
within the given environment. During actual execu‑
tion, the online path planner uses reactive path plan‑
ning for unknown obstacles. A fuzzy inference sy‑
stem is used for trajectory tracking. Adaptive parti‑
cle swarm optimization techniques are used for path
planning in [9]. Objective functions are based on the
distance from robot to goal and from robot to obsta‑
cle. Article [38] uses the ϐireϐly algorithm for mobile
robot navigation in unknown dynamic environments.
Hybrid soft computing approaches have been getting
more traction lately. [37] uses an adaptive neuro‑fuzzy
inference system controller to get the robot steer‑
ing angle dynamically based on the robot’s forward
obstacles in the environment. Path planning using a
genetic algorithm and adaptive fuzzy‑logic control is
proposed in [5]. A genetic algorithm is used to ge‑
nerate the collision‑free initial path. A piecewise cu‑
bic termite interpolating polynomial is used to smooth
the generated optimal path. Later, an adaptive fuzzy‑
logic controller is used to maintain the robot in the
desired path. In [1] a fuzzy logic controller is used
for navigation in an unknown environment. Later the
controller is optimized using genetic algorithms, neu‑
ral networks, and particle swarm optimization. All
these optimization techniques with a manually con‑
structed fuzzy logic controller are compared. A sur‑
vey paper [30] discuss the efϐiciency of path planning
techniques using fuzzy, neural networks, genetic algo‑
rithms, nature‑inspired algorithms, and hybrid algo‑
rithms, and concludes that hybrid algorithms are bet‑
ter. A cloud‑based map storage approach is discussed
in [28]. In this paper, the entire environment’s infor‑
mation is stored in the cloud. This is helpful if the robot
work area consists of multiple buildings/ϐloors. The
robot can access the cloud data by scanning speciϐic
environmental tags like ARTags and QR codes.

This work aims at developing a generalized LfD
technique to train a mobile service robot to navigate
to certain locations in an indoor service environment.
Major features of the algorithm are its portable, gene‑
ric, and user‑friendly nature. Portability can be achie‑
ved by training only with the onboard sensors availa‑
ble on the robot and not augmenting the environment.
This makes the system independent of the environ‑
ment. The system will be generic if it can be used in
any mobile robot platform in any indoor service en‑
vironment with minimal modiϐications. A simple, in‑
tuitive user interface without any wearable device for
training makes it user‑friendly so that even a novice
user can train the robot.

3. Proposed System
The overall work is divided into two stages: le‑

arning from demonstration stage and path‑planning
stage. In the LfD stage, the robot is trained to na‑
vigate to all possible destinations sequentially. Trai‑
ning is started from the robot’s home position to des‑
tination 1, then destination 1 to destination 2, and
so on. ”Home” is the robot’s starting position in the

EEBL Autonomous Execution

TBP Path Planning

Shortest Path

TBP Path Mapping

Path TreeUser Input (Source,Destination)

EEBL Training

Path Matrix

User Input (Navigation Direction)

Fig. 1. Flow Diagram of the Proposed System

autonomous execution stage. The proposed LfD algo‑
rithm is the Enhanced Encoder Based LfD algorithm
(EEBL), which is based on author’s previous work on
theEncoderBasedLfD algorithm (EBL) [33–35]. Some
of the key features of EEBL that are not in EBL in‑
clude training to all the destinations sequentially, dy‑
namic orientation and position error correction me‑
chanism, and identiϐication of reference points in the
environment. EEBL has a training phase and autono‑
mous phase; during the training phase paths are lear‑
ned and path variables are stored as a path matrix. As
destinations are sequentially taught, not all the possi‑
ble routes are learned. With the learned paths as seed
paths, the proposed Tree Based Planner (TBP) maps,
the possible logical paths and a tree is formedwith the
homeposition as the root node andall thedestinations
as child nodes. TBP algorithm generates Virtual Land‑
Mark (VLM) based on the taught paths, which will act
as waypoint for navigation. VLMs are the intermedi‑
ate nodes in the tree. Given a source and destination,
TBP uses the tree to plan the shortest route to navi‑
gate autonomously. Fig. 1 shows the ϐlow diagram of
the proposed system.

A hexagon‑shaped differential drive mobile robot,
as shown in Fig. 2, is used for testing. The robot
has three onboard sensors: wheel encoders, proximity
sensors, and pose sensors. Four proximity sensors are
placed strategically, covering the robot without any
blind spots.

3.1. Enhanced Encoder Based LfD Algorithm (EEBL)
This algorithm uses onboard sensors to learn

paths taught by the trainer. The trainer uses a sim‑
ple interface to move the robot front, left, right, and
back. Wheel encoder data is used to learn the linear
and angular distance for a path and is stored in a ma‑
trix called the path matrix. When the robot is navi‑
gating autonomously just with the distance informa‑
tion, it is prone to having errors like position error

33

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

X

Y

FS - Front Sensor

BS - Back Sensor

LS - Left Sensor

RS - Right Sensor

θ

x’

y’

BS

FS

L
S

R
S

Fig. 2. Robot’s Configuration and Sensor Location

and orientation error. In order to overcome the afo‑
rementioned errors, proximity sensors and pose sen‑
sors are used. Proximity sensors are used to identify
the reference points while learning a path. Reference
points are ϐixed points in the environment like walls,
corridors, etc., and the proximity to them is used to
adjust the robot’s position during autonomous navi‑
gation. When a reference point is identiϐied, proximity
values are stored in a matrix called the reference ma‑
trix. Pose sensors give the orientation angle θ with re‑
ference to Y‑axis, as shown in Fig. 2 of the robot. While
training, the pose of the robot is updated in a matrix
called the orientation matrix after every forward mo‑
vement. Both the referencematrix andorientationma‑
trix are used to correct the position andorientation er‑
rors, respectively, during autonomous navigation.

The EEBL algorithm is divided into twophases: the
training phase and autonomous phase. In the training
phase, the robot is trained to navigate a path, using an
interface to direct it towards the goal point. Training
is initiated from the home position to the ϐirst destina‑
tion and continued sequentially until the path to the
last destination is taught. Two path variables are le‑
arned during this phase: heading direction and linear
or angular distance. These two variables are stored in
a path matrix as on when the robot is stopped or hea‑
ding direction is changed during training. Every row in
the path matrix is the path variables of a single path.
Even though the training is carried out sequentially,
the path matrix is built based on the home position as
a source. This is achieved by taking a partial path from
the previous row in the matrix as per user input and
appending the new path variables learned for a new
destination to it. This is to maintain uniformity and
ease in building a path tree with the home position as
the root node.

Path_Array = [Dj , Lj/θj , D(j+1), Lj/θ(j+1), . . . ,

D(j+n), Lj/θ(j+n)] (1)

Equation 1 is a path array for a single path with
path variables D and L/ θ. D is the heading direction,
which is encoded as 1,2,3 and 4 for forward mo‑

vement, backwardmovement, left turn, and right turn
respectively. L/θ is the linear distance encoder value
if the heading direction is front/back or angular dis‑
tance encoder value. ‘D’ and ‘L/θ’ are called a pose
pair,whichwill determine the pose of the robot’s state.
Here, ‘n’ is the total number of states, the robot will
transit through, before getting to the corresponding
destination. If a path has fewer pose pairs than ‘n’, then
zeros will be padded to the remaining pose pairs to
keep the matrix not skewed. All the paths from home
to different destinations are rows of the formed path
matrix. An example path with its array is depicted in
Fig. 3 with 9 pose pairs.

2

1

3 4

’D’ encoder values

X

Y

Source

Destination

L1

L3

L5

L7

L9

θ2

θ4

θ6

θ8

example path = [1, L1, 4, θ2, 1, L3, 3, θ4, 1, L5, 3, θ6, 1, L7, 4, θ8, 1, L9]

Fig. 3. Example path and array with heading direction
encoded values

The path matrix formed in the training phase is
used to navigate autonomously. Unfortunately, this
data is not enough for a robot to reach a destination
accurately and repeatedly. Mobile robots are prone to
errors due to sensor errors, motor speed mismatch
andwheelmisalignment,which lead to lower accuracy
and repeatability. Two errors are identiϐied: position
error and orientation error. If position or orientation
changes in the source or along the path, the destina‑
tion pointwill vary relative to the error in position and
orientation. Fig. 4 and Fig. 5 depict a scenario where
the robot’s starting position/orientation is changed;
the effect is the same if an error occurs along the path.
As the path distance increases, the error also increases
relatively.

Position Error Position error occurs if there is a dis‑
placement in the robot’s position. It is corrected by
identifying the reference points in the environment.
Reference points are ϐixed points in the environment
like walls and corridors. These points are identiϐied
using the onboardproximity sensor of the robot. In the
training phase, when the robot is moving forward, it
scans for reference points using its left and right proxi‑
mity sensors. A location in the environment is selected
as a reference point if the proximity value (for either
left or right sensor) is more than the given threshold
value and is constant for a given sampling distance.
When a reference point is identiϐied, proximity values

34

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

X

Y

Error

Fig. 4. Position Error

X

Y

Error

Fig. 5. Orientation Error

(for the left and right sensor) and its distance from the
source location are stored in a matrix called the re‑
ference matrix. Similar to the path matrix, each row
of the reference matrix is for a path, and there can be
multiple reference points in a path. The reference ma‑
trix is updated in sync with the path matrix. The path
matrix is updated to reϐlect a reference point as soon
as it is identiϐied. Equation 2 is a reference array for a
path with the reference point ’m’.

X

Y

Source

Destination

L1

L3

L5

L7

L9

θ2

θ4

θ6

θ8

R1

R2

R3

Reference array = [LSV1, Nil, LSV2, Nil,Nil, RSV3]

Orientaiton array = [α1, α2, α3, α4, α5]

Example path = [1, L1/2, R1, 1, L1, R2, 4, θ2, 1, L3, 3, θ4, 1, L5/2, R3, 1, L5, 3, θ6, 1, L7, 4, θ8, 1, L9]

Fig. 6. Example path with reference landmarks and its
corresponding arrays

Reference_array = [LSV1, RSV1, LSV2, LSV2,

. . . , LSVm, RSVm]

(2)

where,
LSV = Left Sensor Value
RSV = Right Sensor Value

Orientation Error The orientation of a robot can
change, mainly due to hardware malfunctions like
wheel misalignment and wheel encoder error. This
causes over‑turning or under‑turning of the robot,
which will cause relative change in the destination
coordinates. It can be corrected using the orientation
information of the robot, which is obtained using a
pose sensor. The pose sensor gives the orientation an‑
gle θ with reference to Y‑axis, as shown in Fig. 2 of
the robot. In the training phase, orientation informa‑
tion is updated as pose angle α in a matrix called the
orientation matrix at the beginning of each forward
movement. This matrix is updated alongwith the path
matrix and reference matrix. Equation 3 shows the
orientation array for a single path.

Orientation_array = [α1, α2, α3, . . . , αp] (3)

Error Correction Let us consider the example path
shown in Fig. 3, butwithwalls along the path as shown
in Fig. 6. The gray blocks are walls and the red dots
along the walls are the points identiϐied as reference
points by the algorithm. In order to ϐind the reference
point two factors have to be ϐixed: proximity threshold
and sampling distance. Let us consider the proximity
threshold to be 0.5 units (unit can be any standardunit
of length) and sampling distance as 1 unit. Assume the
grids in the ϐigure are 0.5 x 0.5 unit. Based on these

35

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

two parameters, the algorithm has identiϐied three re‑
ference points (R1, R2, and R3) along the forwardmo‑
vement path of the robot. As soon as the reference
point is identiϐied, the pathmatrix is updated with the
forward distance value until that point and the corre‑
sponding sensor value is stored in the reference ma‑
trix. If only one sensor value is satisfying the condition,
then another sensor value is stored as Nil. Orientation
array is updatedwith pose anglesα1,α2,α3,α4 andα5

at the beginning of the forwardmovements L1, L3, L5,
L7 and L9, respectively.

In the autonomous phase, a PI control system is
used to auto‑correct the robot’s position and orienta‑
tion error. The identiϐied reference point proximity va‑
lues and pose angles are used as the reference values
for position and orientation correction, respectively.
The control equation is given in equation 4. Kp value is
assumed to be 1 andKi is assumed to be 0.0001,which
is obtained by the trial and error method.

Y (t) = Kpe(t) +Ki

∑
e(t) (4)

where,
e(t) = (Current_value ‑ Reference_value)
e(t) ‑ Error
Y(t) ‑ Controlled variable
Kp ‑ Proportional constant
Ki ‑ Integral constant

In the position correction system, the robot’s po‑
sition is corrected by controlling the sliding velocity
using Y(t), and in the orientation correction system,
the robot’s angular velocity is controlled using Y(t)
to correct the pose of the robot. Algorithm 1 shows
theEEBLalgorithmwith all possible robotmovements
and its matrices updating on different conditions for a
path.

3.2. Tree Based Planner (TBP)
The treebasedplanner is a pathmapping andplan‑

ning algorithm that uses the learned path matrix as
input. The path matrix formed by the EEBL algorithm
has one possible route to all destinations from home;
this is called a partially known path. But this informa‑
tion is not enough toplan efϐicient paths. Initially using
the TBP algorithm, all the other possible logical paths
to all the destinations are mapped. As an end result
of path mapping, a path tree is formed with the home
position as the root node and all the destinations as
child nodes. Pathmapping is carried out by identifying
VLMs, which act as waypoints in the logical paths cre‑
ated and essentially maps the shortest possible paths.
VLMs are identiϐied based on the taught paths. An in‑
tuitive strategy is used to identify the VLMs and all the
points where the robot takes a turn (left or right) are
considered to be VLMs. VLMs are the intermediate no‑
des in the tree. Later, given a source and destination,
TBP’s path planner uses the path tree to plan efϐicient
path to navigate autonomously.

Fig. 7 depicts a scenario with a home position and
three destinations D1, D2 and D3. All the gray blocks
are obstacles, and the line between all the destina‑
tions are the paths it is taught to navigate. The trai‑

Algorithm 1 Enhanced Encoder Based LfD Algorithm
1: Initialize on‑board sensors
2: Initialize path_matrix, reference_matrix, orientai‑

ton_matrix
3: Initialize path count P
4: Check for user input D
5: if D == Forward then
6: while D == Forward do
7: Robot←Move forward
8: if Reference Point then
9: Reference_Matrix[P]← (LSV, RSV)

10: Path_Matrix[P]← (1, Encoder_Value)
11: end if
12: end while
13: Path_Matrix[P]← (1, Encoder_Value)
14: Orientation_Matrix[P]← α
15: else if D == Backward then
16: while D == Backward do
17: Robot←Move backward
18: end while
19: Path_Matrix[P]← (2, Encoder_Value)
20: else if D == Left then
21: while D == Left do
22: Robot← Steer Left
23: end while
24: Path_Matrix[P]← (3, Encoder_Value)
25: else if D == Right then
26: while D == Right do
27: Robot← Steer Right
28: end while
29: Path_Matrix[P]← (4, Encoder_Value)
30: else
31: P← P++
32: end if

X

Y

Home

D1

D2

D3

VLM1

VLM2

Fig. 7. Sample multi destination paths with identified
VLM’s (black circles)

36

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

Home

VLM1

D1 VML2

D3 D2

Fig. 8. Tree generated by TBP Algorithm with VLM’s

Algorithm 2 TBP Algorithm‑ Path Mapping
1: Preprocessing Phase ‑ Sorting Stage
2: for ri = 0 ; i < maxr ; ri++ do
3: for rj = ri+ 1 ; rj < maxr ; rj ++ do
4: if Path_Matrix[ri][0]>Path_Matrix[rj][0]

then
5: swap(ri,rj);
6: else
7: continue;
8: end if
9: end for

10: end for

ning sequence followed was Home→D1, D1→D2, and
D2→D3, respectively. With this trained data, the TBP
algorithm will generate VLMs and form the path tree.
Two VLMs are identiϐied (black dots along the path
in the ϐigure), namely VLM1 and VLM2. VLM1 is cho‑
sen because there is a left turn in the path to reach
D1. Likewise, VLM2 is chosen because there is a right
turn to reach D2. The ϐinal path tree with VLMs and
Destination is shown in Fig. 8. The home position is
the root node, all the VLMs are intermediate nodes,
and all the destinations are child nodes. This is a ter‑
nary graph, where every node can have a maximum of
three child nodes, namely center child, left child, and
right child. Center, left and right nodes are the sym‑
bolic representations of navigation direction for the
parent to reach the child node. For a parent node to
reach a center child node, the robot has to move for‑
ward, and left and right child nodes can be reached si‑
milarly. Every node contains information like forward
distance, turning angle, reference point details, pose
angle, and child nodes details.

The TBL algorithm has two phases: the path map‑
ping and the path planning phase. The path mapping
phase has two stages: the preprocessing stage and the

Algorithm 3 Preprocessing Phase ‑ Sub Path Matrix
Stage
1: int fcount, rcount, lcount;
2: for r = 0 ; r < maxr ; r ++ do
3: if Path_Matrix[r][0] = = 1 then
4: for c = 0 ; c < macc ; c++ do
5: Path_Matrixf[fcount][c]=
6: Path_Matrix[r][c];
7: end for
8: end if
9: Similarly for Left and Right direction creating

Path_Matrixl & Path_Matrixr matrix
10: end for

Algorithm 4 State Formation Phase
1: fcount
2: if (fcount != 0) then
3: for r = 0;r < maxr;r ++ do
4: for c = 0;c < maxc &

Path_Matrixf [r][c]! = 0; do
5: if Path_Matrixf[r][c] = = 1 then
6: create‑forward‑VLM;
7: end if
8: Similarly ffor Left‑VLM & Right‑VLM
9: c += 2;

10: end for
11: create‑destination;
12: end for
13: else
14: Exit;
15: end if

node formation stage. The preprocessing stage splits
the path matrix into three matrices based on the rea‑
chable destination bymoving forward fromhome,mo‑
ving left fromhome, andmoving right fromhome. This
would be the input for the node formation stage. In
this stage, VLMs and their connectivity to home or any
destination is identiϐied. Finally, a tree with the home
as root node is formed. Algorithms 2,3 and 4 show the
path mapping phase.

In the path planning phase, the formed tree is
used to navigate from a given source to a desti‑
nation. In this phase, two paths will be identiϐied
from home→source and home→destination. These
two paths are merged on a common VLM node as a
waypoint; this would give the shortest route possible.
If there is no common VLM, then home is the common
node that will act as the waypoint, and this is the lon‑
gest route possible. Algorithm 5 shows the path plan‑
ning phase.

Consider the tree in Fig. 8. If a path has to
be planned between D3→D1, paths from home to
both the nodes have to be identiϐied. They are
home→VLM1→D1 and home→VLM1→VLM2→D3.
These two paths have VLM1 as a common node.

37

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

Algorithm 5 TBP Algorithm‑ Path Planning
1: path1[m] = ϐind_path(home to source)
2: path2[m] = ϐind_path(home to destination)
3: for r = 0;r < maxr;r ++ do
4: for c = 0;c < maxc;c++ do
5: if path1[r] == path2[c] then
6: break;
7: else
8: continue;
9: end if

10: end for
11: end for
12: merge_routes(r,c)

Merging the paths as VLM1 as the waypoint we get
D3→VLM2→VLM1→D1, and this is the shortest logi‑
cal path possible. The longest path without using this
technique would be D3→VLM2→VLM1→home→D1,
and this goes through the home, which is unnecessary.

The path generated by the path planning phase is
passed to the EEBL algorithmautonomous phase. This
phase navigates the robot in the desired path to the
destination autonomously, while navigation, position,
and orientation correction are carried out if neces‑
sary. This reduces the error in reaching the destina‑
tion accurately.

4. Results and Analysis
The proposed algorithms are implemented in the

player/stage 2D robotic simulation platform. The sy‑
stem is tested in two different environment layouts,
house and hospital, as shown in Fig. 9. The house la‑
yout is a smaller environment, with 8 destinations,
and the hospital is a comparatively bigger and more
complex environment, with 28 destinations.

Initially, the robot is assigned a home position in
the environment and sequential training to navigate
toward all the destinations is carried out using the
EEBLalgorithm.While thepaths are being learned, the
robot also identiϐies virtual landmarks (VLM) and re‑
ference points in the environment. After the training
phase, the TBP algorithm generates a tree with the
home as the root node, VLMs as intermediate nodes,
and all the destinations as child nodes.

Fig. 10 depicts the paths in the house layout with
VLMs and reference points, and Fig. 11 shows the
tree generated for the paths learned with 4 VLMs and
14 nodes. Fig. 12 shows the paths learned in hos‑
pital layout with VLMs and reference points. Fig. 13
shows the tree formed using the hospital layout with
24 VLMs and a total of 52 nodes. Compared to the
house layout, this layout is 3.5 times bigger in terms
of size, number of destinations, and number of nodes
in the tree. This proves that the algorithm is scala‑
ble. Given a destination, a path can be planned using
the tree and navigated to reach the destination. For
example, consider the robot’s current position to be
in D1 of the hospital layout and the given destina‑

tion to be D21. In this case, the robot plans a path
by traversing the tree and ϐinding the shortest pos‑
sible route from source to destination, which will be
D1→VLM8→VLM7→VLM6→VLM5→VLM4→VLM2
→VLM1→VLM3→VLM9→VLM10→VLM11→VLM12
→VLM13→D21.

Fig. 10. House layout with paths learned (black lines),
identified VLM’s (red circles) and reference points (blue
circles)

Home

VLM1

D1 D2VML2

D3VML3

D4 VML4

D5D6VLM5

D7D8

Fig. 11. Tree formed based on house layout paths

38

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

Fig. 9. Stage environment with robot (hexagon shaped red object) in home position, house layout (left) and hospital
layout (right)

Fig. 12. Hospital layout with paths learned (black lines),
identified VLMs (red circles) and reference points (blue
circles)

4.1. Position and Orientation Error Correction
Themost common errors in amobile robot naviga‑

tion system are position error and orientation error.
Orientation error is corrected by storing the pose va‑
lue of the robot along with path variables during path
learning. Position errors can be corrected by identi‑
fying reference points along the paths. These referen‑
ces will be used in the autonomous phase to correct
position error along the x‑axis of the robot’s coordina‑
tes. A closed‑loop PI control system is used to correct
the errors.

A test was conducted to prove the efϐiciency of the
error correction control system, and the repeatability
of the proposed system. In order to test the error cor‑
rection algorithm efϐiciency, a Gaussian error is added
in the forward movement of the robot (to add a de‑
viation in the heading direction) and the wheel enco‑

Home

VLM1

VLM2VLM3

D6VLM4

D5D11 VLM5

D4D10 VLM6

D3D9 VLM7

D2D8 VLM8

D1D7

VLM9

D12VLM10

D13VLM11

D14VLM12

D15VLM13

D21

VLM14

D16VLM15

D17VLM16

D18VLM17

D19VLM18

D20VLM19

D22 VLM20

VLM21

D24 D23VLM22

D26 D25VLM23

D28 D27

Fig. 13. Tree formed based on hospital layout paths

der of the robot (to introduce error in the turning an‑
gle). Repeatability was veriϐied by running a robot to
and from a ϐixed source and destination several times
and calculating the relative average error of its posi‑
tion. A shadow robot is added in the simulation to run
with the actual robot but without going through any
error correction algorithm, to show the effectiveness
of the proposed error correction algorithm. Equation
5 shows the robot position representation in the simu‑
lation environment.

Robot_Position = (X,Y,A) (5)
where,
X ‑ Robot’s X‑coordinate in world frame
Y ‑ Robot’s Y‑coordinate in world frame
A ‑ Robot’s pose angle in world frame

39

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

Case 1: Home to D3 Consider the house layout with
the source as home and destination as D3. This path
was traversed 100 times back and forth continuously
with a Gaussian error of µ=0 and σ=1, which was cho‑
sen by trial and errormethod. Essentially, the robot re‑
aches home andD3, 50 times each. Position data for all
the trials are collected. Reference position (recorded
in the training phase), actual position with error cor‑
rection and actual position without error correction
are plotted in Fig. 14. Fig. 15 shows the plot of the ro‑
bot’s D3 position.

Case 2: D2 to D5 This path ismapped bymerging two
paths fromhome→D2andhome→D5. This path is tra‑
versed back and forth 100 times with Gaussian error
of µ=0 and σ=1. The robot’s position plots in D2 and
D5 after 100 runs are shown in Fig. 16 and Fig. 17, re‑
spectively.

Case 3: Home to D3 with Gauss error (0, 2) To vali‑
date the efϐiciency of the error correction algorithm
the same path as case 1 is executed with a different
Gaussian error parameter. The corresponding plots
are shown in Fig. 18 and Fig. 19.

Relative average position error is calculated for all
the cases. Equation 6 is used to calculate the error %
with respect to the reference position. Table 1 shows
the relative average position error of the cases dis‑
cussed. It is very evident that the X position and pose
average with error correction are much less than wit‑
hout error correction average. Even though the main
objective of our error correction algorithm is to reduce
X position and pose angle errors, to an extent it is in‑
directly correcting the Y position error, too. This can
be observed in case1:D3 and case3:D3 scenarios. The
overall average positional error based on all the three
cases is given in equation 7.

(Avg_error)i% =
|Referencei −Actuali|

|Referencei|
∗ 100

(6)
where,
i = X or Y or A
Reference_i = Reference coordinate
Actual_i = Actual coordinate

Avg_Pos_Error_With_Correction =

(4.29%, 3.72%, 0%)

Avg_Pos_Error_Without_Correction =

(258.11%, 9.06%, 14.33%)

(7)

4.2. Comparison Study
The proposed algorithm is comparedwith breadth

ϐirst search (BFS), Dijkstra’s, greedy best ϐirst search
(BBF), A* and rapidly exploring random trees (RRT)
algorithms. To compare with the proposed algorithm,
a Java‑based path planning simulator [10] is used. An

exact replica (with the same number of cells) of the
hospital layout is created in the Java simulator and
is compared with the resultant path. Two paths are
considered: Home→D28 and D7→D28. Fig. 20 and 21
show the path generated by the proposed and other
algorithms for two different paths. The path mapped
by the proposed algorithm is given in equation 8. A
quantitative comparison based on both the paths is
depicted in table 2. The path length (No. of cells) map‑
ped by the proposed algorithm is on par with the ot‑
her algorithms, where as the visited cell count is very
small compared to other algorithms. This considera‑
bly reduces the path planning time in the proposed al‑
gorithm. Hence the proposed algorithm is faster with
efϐicient path mapping.

Path1 : Home→ V LM1→ V LM3→ V LM14→
through→ V LM22→ D28

(8a)

Path2 : D7→ V LM8→ V LM7→ V LM6→ V LM5→
V LM4→ V LM2→ V LM1→ V LM3→ V LM14→

through→ V LM22→ D28

(8b)

5. Conclusion
In this paper, a novel path planning algorithm ba‑

sed on Learning from Demonstration and Tree Based
Pathplanner algorithms is proposed. Themain focus is
on indoor mobile service robots, which can be used in
commercial and domestic placeswithout any environ‑
ment augmentation. Overall, two algorithms, the En‑
hanced Encoder Based LfD (EEBL) algorithm and Tree
Based Path Planner (TBP) algorithm, are proposed.
Both these algorithmswork in cohesion to achieve the
desired path given a source and destination. Initially,
EEBL is used to learn the partial paths in the environ‑
ment. Later, TBPmaps all the logical pathswith virtual
landmarks (VLM) and reference points. The system is
also capable of correcting positional/orientation er‑
rors that occur due to hardware anomalies in the ro‑
bot. A simple PI control system is used to correct the
errors. The proposed system is implemented and tes‑
ted in Player/Stage, a 2D robotic simulator. The al‑
gorithm is tested in two different environments wit‑
hout any changes in the algorithm. Thismakes thepro‑
posed algorithm environment‑independent i.e. porta‑
ble. One environment is 3.5 times bigger than the ot‑
her, which proves the algorithm is scalable. In order
to test the accuracy and repeatability, a single path is
executed repeatedly by adding gaussian error in the
robot movement. The overall average destination po‑
sition accuracy was calculated to be ±5% (both X‑
position and pose). Finally, the path planned from a
ϐixed source and destination by the proposed algo‑
rithm is comparedwith someof the classical and state‑
of‑the‑art path planning techniques. The result shows
that the proposed algorithm has fewer visited cells

40

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

10 20 30 40 50
1

1.5

2

2.5

3

3.5

No. of Trials

R
o
b
o
t
’s
X
P
o
s
it
io
n

(a)

10 20 30 40 50
� 7

� 6.8

� 6.6

� 6.4

� 6.2

� 6

No. of Trials

R
o
b
o
t
’s
Y
P
o
s
it
io
n

(b)

10 20 30 40 50
� 1.7

� 1.6

� 1.5

� 1.4

� 1.3

� 1.2

� 1.1

� 1

No. of Trials

R
o
b
o
t
’s
P
o
s
e

(c)

Reference With error correction Without error correction

Fig. 14. Case1: Robot’s Home Position with Gaussian error (0,1)

10 20 30 40 50

2.6

2.8

3

3.2

3.4

No. of Trials

R
o
b
o
t
’s
X
P
o
s
it
io
n

(a)

10 20 30 40 50
� 2.25

� 2

� 1.75

� 1.5

� 1.25

� 1

No. of Trials

R
o
b
o
t
’s
Y
P
o
s
it
io
n

(b)

10 20 30 40 50
� 1.7

� 1.6

� 1.5

� 1.4

� 1.3

� 1.2

� 1.1

� 1

No. of Trials

R
o
b
o
t
’s
P
o
s
e

(c)

Reference With error correction Without error correction

Fig. 15. Case1: Robot’s D3 Position with Gaussian error (0,1)

10 20 30 40 50
2

3

4

5

6

No. of Trials

R
o
b
o
t
’s
X
P
o
s
it
io
n

(a)

10 20 30 40 50
1.8

1.9

2

2.1

2.2

No. of Trials

R
o
b
o
t
’s
Y
P
o
s
it
io
n

(b)

10 20 30 40 50
� 1.5

� 1.45

� 1.4

� 1.35

� 1.3

� 1.25

� 1.2

No. of Trials

R
o
b
o
t
’s
P
o
s
e

(c)

Reference With error correction Without error correction

Fig. 16. Case2: Robot’s D2 Position with Gaussian error (0,1)

10 20 30 40 50
� 1

0

1

2

3

4

No. of Trials

R
o
b
o
t
’s
X
P
o
s
it
io
n

(a)

10 20 30 40 50

� 5.2

� 5

� 4.8

� 4.6

� 4.4

� 4.2

No. of Trials

R
o
b
o
t
’s
Y
P
o
s
it
io
n

(b)

10 20 30 40 50

1.4

1.6

1.8

2

No. of Trials

R
o
b
o
t
’s
P
o
s
e

(c)

Reference With error correction Without error correction

Fig. 17. Case2: Robot’s D5 Position with Gaussian error (0,1)

41

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

5 10 15 20 25
1

1.5

2

2.5

3

3.5

No. of Trials

R
o
b
o
t
’s
X
P
o
s
it
io
n

(a)

5 10 15 20 25
� 7

� 6.75

� 6.5

� 6.25

� 6

� 5.75

� 5.5

No. of Trials

R
o
b
o
t
’s
Y
P
o
s
it
io
n

(b)

5 10 15 20 25
� 0.5

� 0.25

0

0.25

0.5

0.75

No. of Trials

R
o
b
o
t
’s
P
o
s
e

(c)

Reference With error correction Without error correction

Fig. 18. Case3: Robot’s Home Position with Gaussian error (0,2)

5 10 15 20 25
2

2.5

3

3.5

4

No. of Trials

R
o
b
o
t
’s
X
P
o
s
it
io
n

(a)

5 10 15 20 25
� 1.6

� 1.4

� 1.2

� 1

� 0.8

� 0.6

No. of Trials

R
o
b
o
t
’s
Y
P
o
s
it
io
n

(b)

5 10 15 20 25

� 1.5

� 1.25

� 1

� 0.75

� 0.5

No. of Trials

R
o
b
o
t
’s
P
o
s
e

(c)

Reference With error correction Without error correction

Fig. 19. Case3: Robot’s D3 Position with Gaussian error (0,2)

Tab. 1. Relative Average Error

Location With Correction (%) Without Correction (%)
X Position Y Position Pose Angle X Position Y Position Pose Angle

Case1: Home 1.57 1.01 0 47.8 1.9 19.7
Case1: D3 2.37 2.32 0 9.8 19.8 12.6
Case2: D2 1.7 6.2 0 73.2 6.3 4.9
Case2: D5 13.8 1.7 0 1340 1.71 5.3

Case3: Home 2.5 3.8 0 52.3 3.8 27
Case3: D3 3.8 7.3 0 25.6 20.9 16.5

Tab. 2. Quantitative path analysis

Paths Algorithm Length (cell count) Visited Cells

Path 1

Proposed 41 41
BFS 48 274

Dijkstra 47 274
GBF 48 76
A* 46 188
RRT 42 101

Path 2

Proposed 59 59
BFS 63 205

Dijkstra 62 205
GBF 64 165
A* 62 236
RRT 66 215

and is on par in terms of path length. Hence the pro‑
posed algorithm proves to have properties like porta‑
bility, scalability, repeatability, accuracy, shorter path
planning time, and efϐicient path generation.

AUTHORS
A. A. Nippun Kumaar∗ – Department of Com‑
puter Science and Engineering, Amrita School of
Engineering, Bengaluru, Amrita Vishwa Vidyapeet‑
ham, India, e‑mail: nippun05@gmail.com, www:
www.nippunkumaar.in.
Sreeja Kochuvila – Department of Electronics
and Communication Engineering, Amrita School of
Engineering, Bengaluru, Amrita Vishwa Vidyapeet‑
ham, India, e‑mail: k_sreeja@blr.amrita.edu, www:
https://amrita.edu/faculty/k‑sreeja/.
S. R. Nagaraja – Department of Mechanical
Engineering, Amrita School of Engineering,
Bengaluru, Amrita Vishwa Vidyapeetham, In‑
dia, e‑mail: sr_nagaraja@blr.amrita.edu, www:
https://amrita.edu/faculty/sr‑nagaraja/.
∗Corresponding author

42

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

(a) Proposed Algorithm (b) Breadth First Search Algorithm (c) Dijikstra Algorithm

(d) Greedy Best First Search
Algorithm

(e) A* Algorithm (f) RRT Algorithm

Fig. 20. Path 1: Hospital layout from Home to D28

(a) Proposed Algorithm (b) Breadth First Search Algorithm (c) Dijikstra Algorithm

(d) Greedy Best First Search
Algorithm

(e) A* Algorithm (f) RRT Algorithm

Fig. 21. Path 2: Hospital layout from D7 to D28

REFERENCES
[1] M. Algabri, H. Mathkour, H. Ramdane, and M. Al‑

sulaiman, “Comparative study of soft compu‑
ting techniques for mobile robot navigation in
an unknown environment”, Computers in Hu‑
man Behavior, vol. 50, 2015, pp. 42 – 56.
https://doi.org/10.1016/j.chb.2015.03.062

[2] V. Alvarez‑Santos, A. Canedo‑Rodriguez, R. Igle‑
sias, X. Pardo, C. Regueiro, and M. Fernandez‑
Delgado, “Route learning and reproduction in
a tour‑guide robot”, Robotics and Autonomous
Systems, vol. 63, Part 2, 2015, pp. 206 – 213.

https://doi.org/10.1016/j.robot.2014.07.013
[3] B. D. Argall, S. Chernova, M. Veloso, and B. Brow‑

ning, “A survey of robot learning from de‑
monstration”, Robotics and Autonomous Sys‑
tems, vol. 57, no. 5, 2009, pp. 469 – 483.
https://doi.org/10.1016/j.robot.2008.10.024

[4] R. Arkin, “Motor schema‑based mobile robot na‑
vigation”, International Journal of Robotics Rese‑
arch, vol. 8, 1989, pp. 92–112.

[5] A. Bakdi, A. Hentout, H. Boutami, A. Ma‑
oudj, O. Hachour, and B. Bouzouia, “Optimal
path planning and execution for mobile ro‑

43

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

bots using genetic algorithm and adaptive
fuzzy‑logic control”, Robotics and Autono‑
mous Systems, vol. 89, 2017, pp. 95 – 109.
https://doi.org/10.1016/j.robot.2016.12.008

[6] D. A. Brenna, B. Brett, and M. V. Manuela, “Policy
feedback for the reϐinement of learned motion
control on a mobile robot”, International Journal
of Social Robotics, vol. 4, no. 4, 2012, pp. 383–395.
10.1007/s12369‑012‑0156‑9

[7] S. Choi, E. Kim, K. Lee, and S. Oh, “Real‑time
nonparametric reactive navigation of mobile ro‑
bots in dynamic environments”, Robotics and Au‑
tonomous Systems, vol. 91, 2017, pp. 11 – 24.
https://doi.org/10.1016/j.robot.2016.12.003

[8] K. Dermot, U. Nehmzow, and A. S. Billings. “To‑
wards automated code generation for autono‑
mous mobile robots”, June 2010.

[9] H. S. Dewang, P. K. Mohanty, and S. Kundu,
“A robust path planning for mobile robot
using smart particle swarm optimization”,
Procedia Computer Science, International Con‑
ference on Robotics and Smart Manufacturing
(RoSMa2018), vol. 133, 2018, pp. 290 – 297.
https://doi.org/10.1016/j.procs.2018.07.036

[10] S. S. Dhanjal. Path Planning in Single and Multi‑
robot Systems. PhD thesis, BITS, Pilani,May2016.

[11] E. W. Dijkstra. “A note on two problems
in connexion with graphs”, December 1959.
10.1145/3544585.3544600

[12] D. Dolgov, S. Thrun,M.Montemerlo, and J. Diebel.
“Practical search techniques in path planning for
autonomous driving”, Jan 2008.

[13] S. Dong and B. Williams, “Learning and recogni‑
tion of hybrid manipulation motions in variable
environments using probabilistic ϐlow tubes”, In‑
ternational Journal of Social Robotics, vol. 4, no. 4,
2012, pp. 357–368. 10.1007/s12369‑012‑0155‑
x

[14] M. Ehrenmann, O. Rogalla, R. Zöllner, and R. Dill‑
mann. “Teaching service robots complex tasks:
Programming by demostration for workshop
and household environments”, 2002.

[15] D. Ferguson and A. T. Stentz. “The ϐield d* al‑
gorithm for improved path planning and replan‑
ning in uniform and non‑uniform cost environ‑
ments”, June 2005.

[16] E. Galceran and M. Carreras, “A sur‑
vey on coverage path planning for robo‑
tics”, Robotics and Autonomous Systems,
vol. 61, no. 12, 2013, pp. 1258 – 1276.
https://doi.org/10.1016/j.robot.2013.09.004

[17] A. M. E. Ghalamzan and M. Ragaglia, “Ro‑
bot learning from demonstrations: Emu‑
lation learning in environments with
moving obstacles”, Robotics and Autono‑
mous Systems, vol. 101, 2018, pp. 45 – 56.
https://doi.org/10.1016/j.robot.2017.12.001

[18] S. Hacohen, S. Shoval, and N. Shvalb, “Applying
probability navigation function in dynamic un‑
certain environments”, Robotics and Autono‑
mous Systems, vol. 87, 2017, pp. 237 – 246.
https://doi.org/10.1016/j.robot.2016.10.010

[19] D. Halbert. “Programming by example”. PhD the‑
sis, University of California, Berkeley, November
1984.

[20] M. Hank and M. Haddad, “A hybrid approach
for autonomous navigation of mobile robots in
partially‑knownenvironments”,Robotics andAu‑
tonomous Systems, vol. 86, 2016, pp. 113 – 127.
https://doi.org/10.1016/j.robot.2016.09.009

[21] P. Hart, N. Nilsson, and B. Rafael, “A formal basis
for the heuristic determination of minimum cost
paths”, IEEE Transactions on Systems Science and
Cybernetics, vol. 4, 1968, pp. 100–107.

[22] J. Hong, Y. Choi, and K. Park. “Mobile robot
navigation using modiϐied ϐlexible vector ϐield
approach with laser range ϐinder and IR sen‑
sor”, 2007 International Conference on Control,
Automation and Systems, 2007, pp. 721–726.
10.1109/ICCAS.2007.4406993

[23] R. Huq, G. K. Mann, and R. G. Gosine,
“Mobile robot navigation using motor
schema and fuzzy context dependent be‑
havior modulation”, Applied Soft Compu‑
ting, vol. 8, no. 1, 2008, pp. 422 – 436.
https://doi.org/10.1016/j.asoc.2007.02.006

[24] Y. K. Hwang and N. Ahuja, “A potential ϐield ap‑
proach to path planning”. In: IEEE Transaction on
Robotics and Automation, vol. 8, 1992, pp. 23–32.

[25] R. Jäkel, S. R. Schmidt‑Rohr, S. W. Rühl, A. Kas‑
per, Z. Xue, and R. Dillmann, “Learning of plan‑
ning models for dexterous manipulation based
on human demonstrations”, International Jour‑
nal of Social Robotics, vol. 4, no. 4, 2012, pp. 437–
448, 10.1007/s12369‑012‑0162‑y

[26] F. Kamil, T. S. Hong, W. Khaksar, M. Y. Moghra‑
biah, N. Zulkiϐli, and S. A. Ahmad, “New ro‑
bot navigation algorithm for arbitrary unknown
dynamic environments based on future pre‑
diction and priority behavior”, Expert Systems
with Applications, vol. 86, 2017, pp. 274 – 291.
https://doi.org/10.1016/j.eswa.2017.05.059

[27] J. Lee, Y. Nam, S. Hong, and W. Cho, “New po‑
tential functions with random force algorithms
using potential ϐield method”, Journal of Intelli‑
gent & Robotic Systems, vol. 66, no. 3, 2012, pp.
303–319. 10.1007/s10846‑011‑9595‑z

[28] R. Limosani, A. Manzi, L. Fiorini, F. Cavallo, and
P. Dario, “Enabling global robot navigation based
on a cloud robotics approach”, International Jour‑
nal of Social Robotics, vol. 8, no. 3, 2016, pp. 371–
380. 10.1007/s12369‑016‑0349‑8

[29] S. M. Lavalle. “Rapidly‑exploring random trees: A
new tool for path planning”, May 1999.

44

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 16, N° 1 2022

[30] T. T. Mac, C. Copot, D. T. Tran, and R. D. Key‑
ser, “Heuristic approaches in robot path
planning: A survey”, Robotics and Autono‑
mous Systems, vol. 86, 2016, pp. 13 – 28.
https://doi.org/10.1016/j.robot.2016.08.001

[31] D. Nakhaeinia, S. Tang, S. Noor, and O. Motlagh, “A
review of control architectures for autonomous
navigation of mobile robots”, International Jour‑
nal of Physical Sciences, vol. 6, 2011, pp. 169–174.

[32] U. Nehmzow, O. Akanyeti, C. Weinrich, T. Kyria‑
cou, and S. A. Billings. “Programming mobile ro‑
bots by demonstration through system identiϐi‑
cation”, European Conference on Mobile Robots,
Freiburg, Germany, 19 Sep 2007 ‑ 21 Sep 2007.

[33] A. A. NippunKumaar and T. S. B. Sudarshan, “Mo‑
bile robot programming by demonstration”. In:
2011 Fourth International Conference on Emer‑
ging Trends in Engineering Technology, vol. 394,
2011, pp. 206–209.

[34] A. A. NippunKumaar and T. S. B. Sudarshan, “Le‑
arning from demonstration with state based ob‑
stacle avoidance for mobile service robots”, App‑
lied Mechanics and Materials, vol. 394, 2013, pp.
448–4556.

[35] A. NippunKumaar and T. Sudarshan, “Sensor
counter approach for a mobile robot to navi‑
gate a path using programming by demonstra‑
tion”, Procedia Engineering, International Con‑
ference on Communication Technology and Sy‑
stem Design, vol. 30, 2012, pp. 554 – 561.
https://doi.org/10.1016/j.proeng.2012.01.898

[36] S. Osentoski, B. Pitzer, C. Crick, G. Jay, S. Dong,
D. Grollman, H. B. Suay, and O. C. Jenkins,
“Remote robotic laboratories for learning from
demonstration”, International Journal of Social
Robotics, vol. 4, no. 4, 2012, pp. 449–461.
10.1007/s12369‑012‑0157‑8

[37] A. Pandey, S. Kumar, K. K. Pandey, and D. R. Parhi,
“Mobile robot navigation in unknown static en‑
vironments using anϐis controller”, Perspectives
in Science, Recent Trends in Engineering and
Material Sciences, vol. 8, 2016, pp. 421 – 423.
https://doi.org/10.1016/j.pisc.2016.04.094

[38] B. Patle, A. Pandey, A. Jagadeesh, and D. Parhi,
“Path planning in uncertain environment
by using ϐireϐly algorithm”, Defence Techno‑
logy, vol. 14, no. 6, 2018, pp. 691 – 701.
https://doi.org/10.1016/j.dt.2018.06.004

[39] A. T. Rashid, A. A. Ali, M. Frasca, and L. For‑
tuna, “Path planning with obstacle avoi‑
dance based on visibility binary tree algo‑
rithm”, Robotics and Autonomous Systems,
vol. 61, no. 12, 2013, pp. 1440 – 1449.
https://doi.org/10.1016/j.robot.2013.07.010

[40] I. R. Roberto, N. Ulrich, K. Theocharis, and
B. Steve. “Modelling and characterisation of a
mobile robot’s operation”, September 2006.

[41] A. Stentz. “Optimal and efϐicient path planning
for partially‑known environments”, May 1994.

[42] Z. Tahir, A. H. Qureshi, Y. Ayaz, and R. Na‑
waz, “Potentially guided bidirectionalized
rrt* for fast optimal path planning in clut‑
tered environments”, Robotics and Autono‑
mous Systems, vol. 108, 2018, pp. 13 – 27.
https://doi.org/10.1016/j.robot.2018.06.013

[43] P. Vadakkepat, T. H. Lee, and L. Xin. “Application
of evolutionary artiϐicial potential ϐield in robot
soccer system”, Annual Conference of the North
American Fuzzy Information Processing Society,
July 2001.

[44] J. Wang, H. Kimura, and M. Sugisaka, “Intelli‑
gent control for the vision‑based indoor navi‑
gation of an a‑life mobile robot”, Artiϔicial Life
and Robotics, vol. 8, no. 1, 2004, pp. 29–33.
10.1007/s10015‑004‑0283‑y

[45] L. Wang, “Automatic control of mobile robot ba‑
sed on autonomous navigation algorithm”, Arti‑
ϔicial Life and Robotics, vol. 24, no. 4, 2019, pp.
494–498. 10.1007/s10015‑019‑00542‑0

[46] L. Xu, L. G. Zhang, D. G. Chen, and Y. Z. Chen,
“The mobile robot navigation in dynamic envi‑
ronment”, 2007 International Conference on Ma‑
chine Learning and Cybernetics, vol. 1, 2007, pp.
566–571. 10.1109/ICMLC.2007.4370209

[47] D. Zhenjun, Q. Daokui, X. Fang, and X. Dianguo.
“A hybrid approach for mobile robot path plan‑
ning in dynamic environments”, 2007 IEEE Inter‑
national Conference on Robotics and Biomime‑
tics (ROBIO), 2007, pp. 1058‑1063. 10.1109/RO‑
BIO.2007.4522310

45

	Introduction
	Related Work
	Proposed System
	Enhanced Encoder Based LfD Algorithm (EEBL)
	Tree Based Planner (TBP)

	Results and Analysis
	Position and Orientation Error Correction
	Comparison Study

	Conclusion

