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Abstract:
This paper presents a developedmethod of 3Dmaps inte‐
gration based on overlapping regions detection andmat‐
ching that works without an initial guess about transfor‐
mation between maps. The presented solution is based
on a classic pipeline approach from computer vision that
has been applied to the 3D maps integration with mul‐
tiple improvements related to model extraction and the
descriptors matching. The process of finding transforma‐
tion betweenmaps consists of three steps. The first one is
the extraction of the model from one of the maps. Then
the initial transformation is estimated between extracted
model and anothermapbased on feature extraction, des‐
cription, and matching. The assumption is that the maps
have an overlapping area that can be used during the
feature‐based alignment. In the last step, the initial so‐
lution is corrected using local alignment approaches, for
example, ICP or NDT. The maps are stored in the octree‐
based representation (octomaps) but during transforma‐
tion estimation, a point cloud representation is used as
well. In addition, the presented method was verified in
various experiments: in a simulation, with wheeled ro‐
bots, and with publicly available datasets. Eventually, the
solution can be applied tomany robotic applications rela‐
ted to the exploration of unknown environments. Nevert‐
heless, so far it was validated with a group of wheeled
robots. Furthermore, the developedmethod has been im‐
plemented and released as a part of the open‐source ROS
package 3d_map_server.

Keywords: multi‐robot mapping, map merging, feature
matching, ICP, NDT, octomaps

1. Introduction
The development of autonomous mobile robots

has received much attention in recent years. Rapid
progress in this area is stimulated by numerous possi‑
ble applications like mine exploration [11], planetary
exploration, scout robots, search and rescue, recon‑
naissance, home vacuum cleaning, lawnmowing or in‑
dustrial applications, for instance, transport in ware‑
houses [3]. However, it turns out that Multi‑Robot Sy‑
stems (MRS) have several advantages over Single Ro‑
bot Systems in many of these applications. Especially,
they are more time‑ef�icient because tasks execution
canbeparallelized. Also, themulti‑robot con�iguration
can provide a higher level of reliability, for example, in
case of malfunction of one of the robots.

One of the requirements for the creation of the au‑
tonomous robot is the ability to create a map of the

unknown environment and localize the robot on it.
The multi‑robot mapping of unknown environments
can also be performed more ef�iciently than a single
robot mapping. First of all, it can be done faster when
it is executed in parallel, which is especially important
during mapping larger areas. Moreover, the robots
can be equipped with different types of sensors what
makes it possible to create more accurate and com‑
plete world models. Nonetheless, several new pro‑
blems speci�ic to multi‑robot systems arise, like coor‑
dination of robots or communication between them.

Typically of multi‑robot mapping, each robot crea‑
tes its local map in the local coordinate frame. One of
the intensively researched topics of mapping by mul‑
tiple robots is merging all of these local maps into one
global map [36]. However, to create such a globally
consistentworldmodel, a fewproblemshave to be sol‑
ved. The �irst one is �inding transformation between
maps. There are a few ideas on how to use the robots’
initial poses and internal localization system to esti‑
mate transformation. But it may be not possible espe‑
cially in the case of a big drift in the pose estimated by
the local localization method.

Another idea is to integrate maps only during ro‑
bots meetings. However, it needs in many cases an ad‑
ditional sensory system to detect other robots or a de‑
dicated detectionmethod. Also, this idea is limited be‑
cause sending data between robots is not enough to
estimate the orientation of robots and they have to see
each other. Nevertheless, it is worth mentioning that
systems that use partial information are developed as
well. Such partial information could be the only dis‑
tance between robots, calculatedbasedon signal time‑
of‑�light.

Another group of approaches depends on sending
measurements from one robot to other robots and the
assumption that maps have an overlapping area. With
measurements from the other robot, it is possible to
locate it on the map, for example, with a particle �ilter
algorithm.

The last group of methods is based on the feature
matching idea. The features are extracted from maps,
identi�ied, and matched. �t is assumed like in the pre‑
vious group that maps have an overlapping area that
can be used during the matching process.

Nonetheless, the map alignment process is more
challenging than, for example, 2D laser scan matching
or depth sensors measurements matching because of
displacement between maps or measurements. The
displacement can reach bigger values especially when
robots startmapping from totally different parts of en‑

73

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 3 2021

vironments. In the case of small displacement, algo‑
rithms that are based on the local optimization can be
used. However, the maps alignment process needs a
global optimization that is resistant to local minima.
1.1. Contribution

This paper presents a developed global 3D maps
integration method with the alignment based on the
feature matching which does not require an initial
transformation estimation. Most of the other approa‑
ches for 3D maps integration are based on some kind
of initial information or they are sensitive to the lo‑
cal minima. In contrast, this method does not need
any initial cues and it deals with the local minima pro‑
blem. The presented method is based on a classic pi‑
peline approach from computer vision that has been
applied to the 3D maps integration with multiple im‑
provements related to model extraction and the des‑
criptorsmatching.Moreover, the introducedmodel di‑
vision into submodels improves the feature matching
process and decreases the number of necessary calcu‑
lations in the optimistic case. To my knowledge, there
is no other application of feature matching with the
model subdivision‑based method for solving the 3D
maps integration problem without an initial transfor‑
mation guess.

The presented approach is based on the assump‑
tion that maps have the same scale and that they have
an overlapping area. The intersection area of themaps
can be extracted and used in the initial alignment step.
In the initial alignment process, one of the maps is di‑
vided into regions, then each region is aligned to the
second map. Finally, the best solution that consists of
the transformation is selected according to the propo‑
sed quality measure, for example, a �itness score.

The method has been developed to work mainly
with octree‑based maps (octomaps) but during the
merging process, the point clouds representation is
used as well. Dual representation makes it possible
to use the advantages of two representations and ef�i‑
ciently perform speci�ic operations. But of course, the
cost behind that is the increased memory usage. Mo‑
reover, the method was veri�ied in multiple test cases
based on data from real robots. It was con�irmed that
with some assumptions it is possible to merge large
3D maps frommultiple robots.

Furthermore, the method of maps integration des‑
cribed in this paper has been implemented in C++
and released as the open‑source software. The soft‑
ware is a part of the ROS (Robot Operating System) [1]
package 3d_map_server [10].
1.2. Problem Statement

This paper deals with the three‑dimensional (3D)
feature maps integration problem. Brie�ly, the pro‑
blem can be de�ined as a data association between
multiple representations of the same part of the en‑
vironment.

Let’s consider a system of N robots R =
{r1, r2, . . . , rn, . . . , rN} in R3 space, where the each
robot creates its partial mapMn in a local coordinate
system Tn. The map can be de�ined as a set of nodes

Mn = {m1,m2, . . . ,mNn
}where |Mn| = Nn. In gene‑

ral, the octomaps integration can be de�ined as a crea‑
tion of one, consistent model of the worldM based on
the k separatemodels which represents regions of the
environmentM ′ = {M1, . . .Mk} (�ig. 1). The problem
can be narrowed down to the only two input models
without loss of generality because of the assumption
that more than two maps can be merged, for instance,
recursively.

Fig. 1. Local maps created by different robots merged
into a one consistent world model

Let’s assume that exists a transformation T 1
2 be‑

tween a pair of models that transforms M1 and M2

to the common coordinate system. The output map is
a composition of the partial maps transformed to the
coordinate system of the �irst map.

M = M1 ∪ T 1
2M2 (1)

In the presented problem the solution consists
of estimated transformations between the coordinate
frames of the input maps. More precisely, the goal is
to �ind the transformations under which the distances
between corresponding nodes in inputmaps aremini‑
mized. In the real world, it is dif�icult to �ind the opti‑
mal transformation T 1

2 because of multiple inaccura‑
cies sources. Errors are introduced by similarities on
themaps andnot enoughdistinctivedescriptionsof fe‑
atures. Also, the input maps have different scales, and
sensors used for maps creation are not ideal.

1.3. Related Work
One of the basic and intensively researched topics

of multi‑robot mapping is a merging of local maps
from robots into one global map [3]. Following the
classi�ication proposed in [21] approaches canbe clas‑
si�ied into two categories� a directmapmerging and an
indirect map merging.

In the direct map merging the system has additio‑
nal information about transformation between maps.
For example, this information can be acquired by vi‑
sual or rangemeasurements during themeeting of ro‑
bots. Such an approach has been presented in [18].
It generates hypotheses by direct measurements be‑
tween robots. Then robots move to a speci�ic loca‑
tion and meet again. If a meeting happens and robots
again detect each other correctly, then the hypothe‑
sis is accepted and maps are merged. In [40], also a
solution based on robot‑to‑robot visual observations
has been proposed. Based on the estimated transfor‑
mation, maps are transformed and in the next step, it
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is checked if maps overlap. In the case of maps over‑
lapping the accuracy of robots relative poses is incre‑
ased by landmarks detection on overlapped parts of
maps by matching them. Another approach has been
presented in paper [20]. This probabilistic map mer‑
ging method depends on Rao‑Blackwellized particle
�ilters with unknown initial poses and models inter‑
robot measurements as Gaussian processes.

The other branch of direct map merging methods
includes these based on the pose of overlapping area
regions or objects inmultiplemaps. Aprobabilistic on‑
line map merging approach working with an omnidi‑
rectional visual system has been described in [32]. It
has been used for one robot that collects partial maps
but can be adapted to a multi‑robot system as well. It
uses a vision system to generate coarse transforma‑
tions between maps based on the place recognition
method. Then depending on that the bounding boxes
are calculated for Haar‑based place recognition that is
able to discriminate new and previously visited loca‑
tions.

On the other hand, indirect map merging is ba‑
sed on �inding and matching the overlapping area
of the maps which are not known a priori. These
methods can be classi�ied into three groups. In the
�irst group, there are mostly approaches based on
point feature detection and matching. In [19] the sy‑
stem for detection of the overlapping regions of maps
has been described. Maps were created with ceiling‑
vision‑based SLAM. The algorithm robustly detects
the overlapping regions and estimates transformati‑
ons for map alignment.

The next group includes methods based on the
scan matching. In [34] the 2D local maps were mer‑
ged by integration of Scale‑Invariant Feature Trans‑
form (SIFT) algorithm to extract, describe and match
features. Also, they used a well‑known optimization
technique in robotic mapping, the ICP(Iterative Clo‑
ses Point) [4, 13] that �inds a rigid transformation be‑
tween two points sets. They used that data from the
2D laser scanner and consecutive scanswerematched
during the map creation. In [2] the virtual robot ap‑
proach has been provided. It treats laser scans from
multiple robots as range measurements to the virtual
robot and generates its odometry data by detection of
similar structures in local maps.

The last group includes spectral information‑
basedmethods. In [6,22], some approaches have been
presented that utilize the spectral information on 2D
maps. They consider the maps merging as a binary
imagematching problem, so they use theHough trans‑
form to structure and decompose the transformation
into separate operations of rotation and translation.
Paper [12] describes a method that uses geometric
and topological similarities of vertices and edges to
�ind a match between two maps.

With the growing demand for robotics services in
complex, human environments, the need for 3D maps
storing and processingmethods will be essential. This
kind of world representation allows robots to ope‑
rate in the interior ofmulti‑level buildings, inside clut‑

tered rooms, or in rough terrain. Also, 3D maps are
better suited to heterogeneous multi‑robots systems
[28, 30, 38], especially when robots use different sen‑
sors. Papers [9, 17] deal with the octomaps [16] mer‑
ging problem with the ICP based methods. The alter‑
native to the ICP approach for the 3D local alignment
has beenpresented in [23,33]. It is basedonNDT (Nor‑
mal Distribution Transform) and is more ef�icient than
the ICP algorithm because it doesn’t require nearest
neighbors search. Graph‑based merging methods are
also developed [5], and they have the advantage in in‑
consistencies reduction because of a backend graph
optimization. The paper [7] presents a solution for the
3D point clouds alignment based on the transforma‑
tion into the Radon/Hough domain. In [24] it was pre‑
sented the comparison of different 3Dmaps matching
approaches.
1.4. World Representations

Anoctomap [35,37] is a tree‑based representation,
which is memory ef�icient and well suited to large en‑
vironments. It is built upon a recursive dividing of the
world into eight cubic parts. One of the key features of
octomap is the possibility to postpone the initializa‑
tion of nodes until a robot visits a speci�ic part of the
environment. Naturally, it is not possiblewith �ixed re‑
presentations like voxel grids. However, the computa‑
tional complexity of a node random access isO(log d)
and it depends on the depth of the octree. Another ad‑
vantage of the octomap is the possibility of optimiza‑
tion. Blocks can be divided into smaller parts as long
as output blocks are distinct. If the obtained blocks are
similar enough, the branch is cut and themodel is con‑
sistent.

Fig. 2. Recursive space division which is the idea behind
octomaps

As mentioned in section 1.2, the map can be de�i‑
ned as a set of nodeswhich determines the probability
of occupancy of represented segments of the environ‑
ment. Such probabilities are updated according to the
following formula [16]:

p(n | z1:t) (2)

=

[
1 +

1− p(n | zt)
p(n | zt)

1− p(n | z1:t−1)

p(n | z1:t−1)

p(n)

1− p(n)

]−1

where:
‑ zt – denotes measurement at time t,
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‑ p(n) – a priori occupancy probability,
‑ p(n | z1:t−1) – previous probability estimation,
‑ p(n | zt) – occupancy probability at measurement zt
calculated based on sensor model.

2. Maps Integration Method
In the proposed approach a few processing steps

are necessary for each of the maps. The data pipelines
have been presented in the �ig. 3. On the input of the

Fig. 3. The data pipelines in the presented maps
merging approach

integration method, there are two 3D maps. Nevert‑
heless, the important assumption is that maps have
an overlapping area, which is necessary for correct
operation. The whole maps merging process consists
of two main parts: �inding of the transformation bet‑
ween maps and data integration. The output of the al‑
gorithm is an integrated map.

The �inding of the transformation could be divided
into three steps:
‑ model extraction,
‑ global alignment,
‑ and local alignment.
One of the maps �map � in the �ig. 3) is used directly
and the other one is used for nmodels extraction. The
process of models extraction is described in the follo‑
wing section.

In the global alignment, there are some common
operations for bothmaps, like �iltration, keypoints de‑
tection, and descriptors computation. Based on the
computed descriptors and the assumption that maps
have an overlapping area, the descriptors from maps
are matched to each other with a randomized algo‑
rithm. As a consequence of onemap division intomul‑
tiple models, the result of initial alignment is a set of

n hypothesesH = {h1, . . . , hn}. Then, each hypothe‑
sis is evaluated based on the selected qualitymeasure,
for example, the �itness score. As a result, the best so‑
lution is selected from the set of accepted hypotheses
HA. If at least one hypothesis is accepted then the pro‑
cessing is continued and the �inal result is the transfor‑
mation that transforms one of the maps to the coordi‑
nate system of the other map. Otherwise, the proces‑
sing is stopped at this point.

In the next step, the transformation from the previ‑
ous step is corrected in the process called a local alig‑
nment. For this purpose, variants of ICP andNDT algo‑
rithms were used.

However, to generate the integrated map that con‑
sists of both parts, it is necessary to include someaddi‑
tional steps that are parts of the data integration pro‑
cess. This process consists of a map conversion to the
octomap, the transformation of one map to another
coordinate system, and �inally the combination of data
of two maps into one consistent model.
2.1. Model Extraction From One of Maps

The �irst step is to divide the �irst map into rectan‑
gular blocks that are used as models. As shown in the
�ig. 4, a few cases of relations between two maps have
to be considered. The maps integration can be done
only in the �irst three cases when the overlapping re‑
gion exists.

map 1

map 2

I

map 2

map 1

II

map 1 map 2

III

map 1 map 2

IV

Fig. 4. Different cases of maps overlapping (I‐III) or
when there is no common part between maps (IV)

Moreover, it has been noticed that the process of
maps integration can be speeded up in the most com‑
mon case ��ig. 4), when robots start exploration from
the same place and explore different parts of the en‑
vironment. Therefore, excluding the multi‑�loor map‑
ping, kidnapped robot problem, and a case when one
of the maps is entirely included in the second one, in
most cases the overlapping area begins on the bor‑
ders of both maps. Because of that, processing of the
map begins from the outside and proceed in a spiral
towards the center ��ig. 5). To speed up the method
and decrease the number of calculations, not all rec‑
tangular blocks are processed.
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Fig. 5. A division of one map and extraction of the
model ‐ 2D and 3D cases

Also, assuming that robots movemostly parallel to
the ground, then maps are rather limited in Z axis and
wider in x and y axes. Therefore, map heights are sig‑
ni�icantly smaller than sizes in x and y axes. Then the
division can be performed in two dimensions. In spe‑
ci�ic cases, for example, maps of multi‑level buildings,
themodel canbe extracted fromoneof themapsbased
on the 3D grid (�ig. 5).

One of the stop criteria is a �itness score combined
with a number of correspondences. So, if the criteria
presented in the following part are satis�ied, the pro‑
cessingof the remainingblocks is stopped. If amaphas
a lot of nodes near the border that is in the overlap‑
ping area with another map, it should stop fast ‑ just
after having processed a few blocks. However, in some
cases, maps near the borders are not dense and then
processing should be continued until the center of the
map is reached.

2.2. Input Data Filtration
In the process of maps merging it is necessary to

correctly prepare the data. Therefore, the preproces‑
sing was done in a few steps.

The �irst one is apass‑through �iltration that allows
the rejection of points that are not inside the useful
area. For example, the maps are cut in the z‑axis to re‑
move the ground and reduce the number of points to
speed up further calculations.

In the next step, the point cloud is downsampled
with a voxel grid �ilter. The idea is to divide space into
voxels with speci�ied sizes and approximate points in
each voxel.

The last �iltration step is the removal of outliers
that is based on a statistical analysis of neighboring
points, and points that do not meet the requirements
are removed. In this work, an approach [27] that com‑
putes the distribution of the point to neighbors distan‑
ces has been applied. Assuming that resulted distribu‑
tion is �aussian, points which are outside a speci�ied
range are �iltered out.

2.3. Keypoint Detection
After �iltration, surface normals are estimated (�ig.

6). The algorithm for each point �inds neighboring
points in a speci�ied search radius and then estima‑
tes a �itting planewith the least‑square algorithm [25].
Based on the estimated plane equation ax+ by+ cz+
d = 0, the surface normal is calculated n = [a, b, c].

The descriptors calculations is a computationally
expensive step. Therefore, the descriptors are compu‑

n

pi

θi

Fig. 6. Normal vector in specified point and the θi angle
between the normal vector n and point pi

ted only in selected points ‑ keypoints. The properly
selected keypoints should be distinctive and repea‑
table to deal with noises or different points of view.
Commonly used approaches that deals with keypoints
extraction in 3D data are NARF detector [29], ISS [39]
(�ig. 7) or modi�ied Harris detector [14]. Another, less
computationally demanding solution that has been
applied to this work is uniform sampling. It creates a
3D voxel grid over the input point cloud and then in
each voxel the present points are approximated with
their centroid.

Fig. 7. An example of keypoints (red points) detection
with the ISS method

2.4. Local Features Description
In order to �ind similar areas on the maps, all de‑

tected features should be described in the most con‑
cise possible way that makes it easy to compare. The‑
refore, in each keypoint selected in the previous step,
the local descriptor is calculated. Local descriptors
describe a local neighborhoodaroundaquerypoint on
the surface. The widely used is FPFH method that is a
local version of PFH [26] around a given keypoint. It is
based on pairing the query point with neighbors and
calculations of orientation differences for each pair.
After that, a weighted sum of the orientations diffe‑
rences is computed and the output vector is created
by concatenation of histograms.

However, for the purpose of the maps integration
method, a SHOT (Signature of Histograms of Orienta‑
tions) descriptor [31] has been used. It is based on
the spherical support (neighbors points) that is divi‑
ded into spatial segments (�ig. 8). For each segment,
the descriptor calculates a histogram representing the
distributionof the cos θi, where θi is the angle between
the surface normal in each point from the support and
the surface normal vector n in the query point (�ig. 6).
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Thenall local histogramsare combined intoone vector
and the descriptor is created. One of the advantages of
the SHOT descriptor is the possibility to utilize texture
information like a point color received from theRGB‑D
sensor.
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Fig. 8. A spatial division of the spherical support and
histogram of cos θi value range

2.5. Features Matching
The featuresmatching uses the descriptors extrac‑

ted and computed in the previous steps. The �irst des‑
criptors set DM is calculated for keypoints of extrac‑
ted modelM ′ = {mi | mi ∈ R3, i = 1, . . . , NM} and
the second setDS for the sceneS′ = {si | si ∈ R3, i =
1, . . . , NS}. Those two sets of descriptors arematched
to each other. It means that for each point from the set
M ′ it should be found the point in S′ with a similar
descriptor that relates to the same region in the se‑
cond map. After that, one should calculate a transfor‑
mation thatminimizes distances betweenpairs of des‑
criptors.

To match the descriptors sets, the SAC (Sample
Consensus) alignment approachwasused [26]. The al‑
gorithm idea is similar to the RANSAC (Random Sam‑
ple Consensus) [8]method and randommatching of k‑
nearest neighbors. Themethod consists of three steps:
‑ Randomly select k points from the setM ′ and them
do set P = {pi | pi ∈ R3, i = 1, . . . , k},

‑ For each pi ∈ P , �ind points with similar descrip‑
tors in S′ and randomly select from them the one
that will make a pair with the point from P ,

‑ For each pair of points, called correspondence, com‑
pute the transformation between points and the er‑
ror metric.
Repeating the above steps allows to avoid local mi‑

nima and �ind transformationwhichminimizes the er‑
ror metric. It is not an �inal solution but rather an ini‑
tial guess for the next step which is a local alignment.
The example of pairs of features matching between
two maps has been shown in the �ig. 9.

Fig. 9.Matching of feature pairs from two maps

2.6. Local Alignment
As a �inal step of transformation estimation, the lo‑

cal correction is applied. For this purpose, the scene is
cropped to the size of themodel in�lated by a speci�ied
distance dm, as shown in the �ig. 10.

part of a scene
model

dm

Fig. 10. The scene cropped to the size of the model with
the inflation distance. On the right side, there is a model
matched to the cropped scene

After that, the ICP based approach is used to cor‑
rect locally a transformation between the scene S =
{si | si ∈ R3, i = 1, . . . , NS} and the model M =
{mi | mi ∈ R3, i = 1, . . . , NM}. The idea behind this
method depends on matching one map (scene) D to
the second one M called model in such a way as to
minimize distances between pairs of points (nearest
neighbors) from both sets. The steps in k‑th iteration
of algorithm are as follows:
‑ ∀mk

i ∈ M �ind the closest point (nearest neighbor)
ski ∈ S,

‑ Minimize distances between corresponding points
pairs with the least squares method

E(R, t) =
1

NM

NM∑
i=1

||Rmi + t− ski ||2, (3)

‑ Transformmodel according to estimated rotationR
and translation t

Mk+1 = RMk + tk, (4)

‑ Terminate if error value is below the threshold τ .
The �inal transformation can be estimated by repe‑

ating the above steps.
2.7. Evaluation of Estimated Transformation

To evaluate the solution, a �itness score fs has been
computed. It computes the mean error between pairs
of corresponding points (pi, qi) based on the nearest
neighbors calculation. The pairs of points are placed in
two points sets. The �irst one is P = {pi | pi ∈ R3, i =
1, . . . , n} and the second one isQ = {qi | qi ∈ R3, i =
1, . . . , n}. Nevertheless, the standard version of the �it‑
ness score is not very robust, for instance, it can be cal‑
culated on the basis of a small number of pairs, which
means it is not very reliable. So, there were applied a
fewmodi�ications. One of them is the calculation of bi‑
naryweights for eachpair depending on themaximum
distance between corresponding points dth, so only
pairswith smaller distances are considered in calcula‑
tions. Also, if the number of pairs with positive weight
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Thenall local histogramsare combined intoone vector
and the descriptor is created. One of the advantages of
the SHOT descriptor is the possibility to utilize texture
information like a point color received from theRGB‑D
sensor.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

cos( i)

0

10

20

30

Fig. 8. A spatial division of the spherical support and
histogram of cos θi value range

2.5. Features Matching
The featuresmatching uses the descriptors extrac‑

ted and computed in the previous steps. The �irst des‑
criptors set DM is calculated for keypoints of extrac‑
ted modelM ′ = {mi | mi ∈ R3, i = 1, . . . , NM} and
the second setDS for the sceneS′ = {si | si ∈ R3, i =
1, . . . , NS}. Those two sets of descriptors arematched
to each other. It means that for each point from the set
M ′ it should be found the point in S′ with a similar
descriptor that relates to the same region in the se‑
cond map. After that, one should calculate a transfor‑
mation thatminimizes distances betweenpairs of des‑
criptors.

To match the descriptors sets, the SAC (Sample
Consensus) alignment approachwasused [26]. The al‑
gorithm idea is similar to the RANSAC (Random Sam‑
ple Consensus) [8]method and randommatching of k‑
nearest neighbors. Themethod consists of three steps:
‑ Randomly select k points from the setM ′ and them
do set P = {pi | pi ∈ R3, i = 1, . . . , k},

‑ For each pi ∈ P , �ind points with similar descrip‑
tors in S′ and randomly select from them the one
that will make a pair with the point from P ,

‑ For each pair of points, called correspondence, com‑
pute the transformation between points and the er‑
ror metric.
Repeating the above steps allows to avoid local mi‑

nima and �ind transformationwhichminimizes the er‑
ror metric. It is not an �inal solution but rather an ini‑
tial guess for the next step which is a local alignment.
The example of pairs of features matching between
two maps has been shown in the �ig. 9.

Fig. 9.Matching of feature pairs from two maps

2.6. Local Alignment
As a �inal step of transformation estimation, the lo‑

cal correction is applied. For this purpose, the scene is
cropped to the size of themodel in�lated by a speci�ied
distance dm, as shown in the �ig. 10.
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{si | si ∈ R3, i = 1, . . . , NS} and the model M =
{mi | mi ∈ R3, i = 1, . . . , NM}. The idea behind this
method depends on matching one map (scene) D to
the second one M called model in such a way as to
minimize distances between pairs of points (nearest
neighbors) from both sets. The steps in k‑th iteration
of algorithm are as follows:
‑ ∀mk

i ∈ M �ind the closest point (nearest neighbor)
ski ∈ S,

‑ Minimize distances between corresponding points
pairs with the least squares method

E(R, t) =
1

NM

NM∑
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||Rmi + t− ski ||2, (3)

‑ Transformmodel according to estimated rotationR
and translation t

Mk+1 = RMk + tk, (4)

‑ Terminate if error value is below the threshold τ .
The �inal transformation can be estimated by repe‑

ating the above steps.
2.7. Evaluation of Estimated Transformation

To evaluate the solution, a �itness score fs has been
computed. It computes the mean error between pairs
of corresponding points (pi, qi) based on the nearest
neighbors calculation. The pairs of points are placed in
two points sets. The �irst one is P = {pi | pi ∈ R3, i =
1, . . . , n} and the second one isQ = {qi | qi ∈ R3, i =
1, . . . , n}. Nevertheless, the standard version of the �it‑
ness score is not very robust, for instance, it can be cal‑
culated on the basis of a small number of pairs, which
means it is not very reliable. So, there were applied a
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nw is below the threshold value, the �itness score is
marked as worthless.

wi =

{
1, if ∥pi − qi∥ ≤ dth

0, otherwise (5)

nw =

n∑
i=1

wi (6)

fs =




n∑
i=1

∥pi − qi∥2
nw

wi, if nw ≥ nth

+∞, otherwise
(7)

where:
‑ n is a number of corresponding pairs,
‑ nth is a threshold value for the number of pairs.

The presented formula allows avoidance of false
goodnodesmatchingbecauseof theuseof a threshold.
�ithout it, it is possible to get a low �itness score only
based on a small number of points pairs.

3. Validation
The maps integration algorithm has been valida‑

ted in numerous experiments. The performed experi‑
ments could be divided into three parts. The �irst part
is based on data from publicly available datasets from
Freiburg University, released under Creative Commons
Attribution License CC 3.0 [15]. The second part con‑
sists of experiments with two Turtlebot robots. The
last part contains the performance evaluation for dif‑
ferent maps alignment methods.

3.1. Experiments Based on Datasets
Maps placed in dataset [15] has been created ba‑

sed on data from a SICK LMS laser scanner was placed
on a pan‑tilt unit. As a result, the accuracy of maps is
better in comparison to maps created with the RGB‑D
sensor but they do not provide information about the
color of the surface.

The selected results of the mapsmerging based on
the datasets have been placed in the �igures 11 ‑ 13.

Other results are shown in table 1, where:
‑ n1 and n2 denote sizes (a number of nodes) of two
input maps,

‑ TR is a real transformation between maps in format
(x, y, z, roll, pitch, yaw),

‑ r is an approximated size of an overlapping area of
both maps as a percentage of the full map,

‑ fs is a �itness score of the best solution from all ex‑
tracted models,

‑ Terr is an error value between real and estimated
transformation and is calculated as
Terr = ∥Test · T−1

R − I4∥F ,
‑ t denotes processing time in seconds.

Fig. 11.Model matching and transformation estimation
between two maps. The first map (blue) was used as a
scene. From the other map (red), a model (yellow) has
been extracted and matched to the first map. The
matched and transformed model was marked as a green
region. The real transformation between maps was
TR = (7.5, 0.2, 0.1, 1o, 1o, 5o)

Fig. 12. Another example of finding transformation
between maps, with different real, initial transformation
TR = (9, 1.0, 0.1, 1o, 2o, 15o)

Tab. 1. Results of transformations estimation

n1 n2 TR r fs Terr t[s]

4.0 8.3 (12, 6, 0.5,
16% 0.028 0.25 15·105 ·105 5o, 5o, 60o)

6.5 8.3 (12, 6, 0.5,
32% 0.023 0.007 26·105 ·105 5o, 5o, 30o)

8.9 9.9 (14, 4, 0.5,
64% 0.023 0.006 40·105 ·105 5o, 3o, 45o)

1.0 1.0 (15, 3, 0.5,
84% 0.023 0.009 44·106 ·106 5o, 5o, 45o)

3.2. Experiment With Turtlebot Robots
To validate the integration algorithm on noisy data

representing scenes encountered in mobile robotics
applications, the experiments with two mobile ro‑
bots Turlebots (�ig. 14) were performed. The robots
were equipped with an odometry system, laser scan‑
ner Hokuyo UST‑10LX and RGB‑D sensor Intel Real‑
Sense D435. The system used for the octomaps crea‑
tion was presented in the �ig. 15. Similarly like in the
simulation, it was built upon the ROS framework, and
it used the GMapping SLAM.
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a

b

Fig. 13. Example of two maps integration (a) with real
transformation between maps
TR = (10, 1.5, 0.1, 3o, 2o, 25o) and an integrated map
(b) as a result

Fig. 14. The Turtlebot mobile robot with the sensors

Fig. 15. The high‐level control system used to create the
octomap by the Turtlebot robot

During the experiment with Turtlebots in a robo‑
tics laboratory and corridor localized in the campus of
WrocławUniversity of Science and Technology, robots
moved following the paths shown in �ig. 16. Results
from experiments have been shown in �igures 17‑19.

Fig. 16. Paths of two robots during the experiment

a

b c

Fig. 17. An experiment with a mapping of the laboratory
in Wrocław University of Science and Technology. The
figure shows maps before merge (a) with extracted
(yellow) and matched model (green). Also it contains an
output map (b) and a map of the same area created by
one robot (c)

3.3. Performance Evaluation of Alignment Algorithms
The performance of different maps integration

method modi�ications has been evaluated. The mean
value of error has been calculated for multiple testing
cases which contain distinctive maps of the environ‑
ment.

The diagram (�ig. 20) contains mean errors (Terr)
for different global alignment methods. The following
global alignment methods were evaluated: SAC (Sam‑
ple Consensus) and GCC (Geometry Consistency Clus‑
tering). Additionally, it was checked if a division of
onemap intomodels (model extraction process) could
speed up the alignment procedure. The cases with div
post�ix in name, have been using model division.

The diagram (�ig. 21) contains mean errors (Terr)
for combinations of local and global alignment met‑
hods. As a local methods, ICP [4] and NDT [23] have
been compared.
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global alignment methods were evaluated: SAC (Sam‑
ple Consensus) and GCC (Geometry Consistency Clus‑
tering). Additionally, it was checked if a division of
onemap intomodels (model extraction process) could
speed up the alignment procedure. The cases with div
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a

b c

Fig. 18. Integration of maps from another robots run,
from the same location (a,b) but with extended area. It
has been shown also the 2D map of the same area (c)

a b

Fig. 19. The last case of two maps integration from
Turtlebots robots

sac_iss3d sac_iss3d_div gcc_iss3d gcc_iss3d_div

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

T

e
r
r

Fig. 20.Mean error between real and estimated
transformations for global alignment methods

4. Conclusion
The paper presents the approach to 3Dmaps inte‑

gration problem without the initial knowledge about
the relative poses of robots. It is based on feature de‑
tection and matching techniques. To speed up proces‑
sing, randomized algorithms were used. Also, some
optimization steps for the most common cases were
introduced like processingmaps from the outside part
to the center.

The evaluation uses publicly available data sets
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Fig. 21.Mean error between real and estimated
transformations for combination of global and local
alignment methods

and data from experiments with Turtlebots. The re‑
sults show that the approach is effective in various en‑
vironments. So, when properly tuned and maps over‑
lap enough (above 15%of common space) themethod
is quite robust.

However, the merging method has some weaknes‑
ses. One of them is the computational cost of the data
processing pipeline, especially during the �irst robots
met when initial alignment is necessary. Then pro‑
cessing can take hundreds of seconds for two 20m ×
20m × 2m maps. Also, it turns out to be hard to �ind
a transformation between octomaps that contain a
ground plane as the ground plane is wrongly matched
between maps. Of course, it can be �ixed relatively ea‑
sily, by removing the ground plane from maps or by
introducing another keypoints detection method. Be‑
sides of that the open topic is a scaling of the method
as it was tested only on two robots so far.

Another issue that is still not addressed is the loop
closure problem. Currently, it was assumed that a local
merging error is low enough and its in�luence is neg‑
ligible. However, it is not true and after multiple mer‑
gingprocesses it can increase to a signi�icant value and
have an impact on the quality of themap. One of possi‑
ble improvements canbeproviding a high‑level graph‑
based approach tomanagemultiple partial maps from
robots togetherwith some kind of backend SLAMmet‑
hod.

Further research will be also directed to the op‑
timization of algorithms, especially that many of the
operations can be processed in parallel.
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