
18

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 4 2021

Trajectory Planning for Narrow Environments That Require
Changes of Driving Directions

Submitted: 19th August 2021; accepted: 8th February 2022

Jörg Roth

DOI: 10.14313/JAMRIS/4-2021/23

Abstract:
In the area of mobile robotics, trajectory planning is the
task to find a sequence of primitive trajectories that con-
nect two configurations, whereas non-holonomic con-
straints, obstacles and driving costs have to be consid-
ered. In this paper, we present an approach that is able
to handle situations that require changes of driving di-
rections. In such situations, optimal trajectory sequences
contain costly turning maneuvers – sometimes not even
on the direct path between start and target. These situ-
ations are difficult for most optimization approaches
as the robot partly has to drive paths with higher cost
values that seem to be disadvantageous. We discuss the
problem in depth and provide a solution that is based on
maneuvers, partial backdriving and free-place discovery.
We applied the approach on top of our Viterbi-based tra-
jectory planner.

Keywords: Mobile Robots, Navigation, Trajectory Plan-
ning, Complex Turning Situations

1. Introduction
Trajectory planning is a fundamental function of
a mobile robot. When executing tasks such as trans-
porting items, the robot has to drive trajectories that
meet certain measures of optimality. Corresponding
cost functions consider driving time, energy con-
sumption, mechanical wear or buffer distance to ob-
stacles. A planning from the current pose to a target
pose takes into account an obstacle map and creates
a sequence of primitive movement commands such
as driving arcs or straight, whereas the resulting se-
quence of trajectories minimizes the given cost func-
tion. Approaches that solve this problem often have
two phases:
• A route planner tries to find a line string in the

workspace with minimal costs that does not cut
obstacles, with respect to the robot’s driving
width,

• A trajectory planner in the configuration space
takes the route points from the former phase, but
also considers non-holonomic constraints such as
minimal curve angles or driving orientations.
For route planning, there exist a variety of efficient

solutions, most base on A*, where the workspace may
be modelled by, e.g., grids or visibility graphs. The
two-phase planning makes the problem manageable
even for complex or large-scale environments as the

pure workspace planning only operates on few di-
mensions. The second phase is much harder, because
non-holonomic constraints make it difficult to use
straight-forward optimization techniques. Note that
other approaches, such as probabilistic path planning
may compute a solution in a single phase. We discuss
this in the next section.

Even though effective for many situations, some-
times the two-phase approach fails. This is because
the workspace planning sometimes suggests a route
that cannot adequately be mapped into the configu-
ration space. In this paper, we consider robots that
are not able to directly turn in place. If, e.g., a car-like
robot has to change its driving direction (fore to back-
wards or vice versa), turning maneuvers are required.
If starts or targets are in a narrow area, we have to
plan trajectories where the locations of turns are not
obvious. E.g., think of a charging station that requires
the robot to drive backwards into a parking bay.

Start

Target

Fig. 1. A Complex Turning Situation

Fig. 1 illustrates such a situation: the robot should
only slightly move, but should turn by 180°. A pure
workspace planning that ignores the orientation com-
putes a short direct route. However, if the hallway is too
narrow, the robot first has to drive a costly route out-
side the narrow area to perform a turning maneuver.

Typical planning approaches have difficulties
to find such paths. These situations can be found in
everyday’s life, e.g., when we want to park a car in
a narrow parking bay or when we want to reverse the
driving direction but have to consider constraints giv-
en by the road geometry.

This paper proposes an approach to efficiently
compute paths with up two turning maneuvers. Note
that for typical robots, a maximum of two changes
of driving directions are sufficient. The key idea: we

19

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 4 2021

Articles 19

suggest an iterative planning that tries to optimize
a sequence of maneuvers. As we keep multiple inter-
mediate maneuvers per iteration, required turning
maneuvers with higher local costs are also consid-
ered. To deal with paths that have to be extended to
a position away from the direct connection (such as
in Fig. 1), we suggest an extension of A* to find ap-
propriate free places. We finally model all algorithmic
components by a multi-strategy planning that pro-
vides a single software interface for planning tasks,
meanwhile automatically applies the least complex
approach for a specific scenario.

2. Related Work
Early work investigated shortest paths for vehicles
that are able to drive straight forward and circular
curves [3, 5, 17] or integrated additional primitive
trajectories [2, 22]. Even though a combination of
such primitive trajectories may appear as turning ma-
neuvers, turning situations are not explicitly consid-
ered. Moreover, only path lengths, but not the costs
for driving direction changes were examined.

Further work looked at longer paths that go
through an environment of obstacles. As the variation
space of possible trajectory sequences gets very large,
probabilistic approaches were suitable to find at least
a suboptimal solution [10, 12, 13]. They randomly
connect configurations by primitive trajectories, cre-
ate a connection graph, then find an actual path. Some
work also used potential fields [1] or visibility graphs
[15]. With the help of geometric route planners, the
overall problem of trajectory planning can be reduced.
In [11], the route planning step and a local trajectory
planning step were recursively applied.

[16] introduced the state lattice idea, which is
a discrete graph embedded into the continuous state
space. Vertices represent states that reside on a hyper
dimensional grid, whereas edges join states by trajec-
tories that satisfy the robot’s motion constraints. The
original approach was based on equivalence classes
for all trajectories that connect two states and per-
formed inverse trajectory generation to compute the
result trajectory. [7] introduced a two-step approach,
with coarse planning of states based on Dynamic Pro-
gramming, and a fine trajectory planning that con-
nected the formerly generated states.

Random sampling can also be used to improve gen-
erated trajectories. E.g., CHOMP [27] used functional
gradient techniques based on Hamiltonian Monte Carlo
to iteratively improve the quality of an initial trajectory.
The approach in [14] represented the continuous-time
trajectory as a sample from a Gaussian process gen-
erated by a linear time-varying stochastic differential
equation. Then gradient-based optimization technique
optimized trajectories with respect to a cost function.

Special planning situations such as driving in the
parking bay may explicitly be integrated into the plan-
ning component. Approaches such as [25, 26] were
suitable in the area of autonomous driving, where
tasks such as parking cars often occur. For this, the
planning components identify the respective pattern

and integrate a pre-defined movement. It is difficult
to extend such an approach to arbitrary situations.

Probabilistic path planning based on RRT [12]
created numerous random configurations and tried
to connect them to a tree of valid trajectories. Ad-
vanced variations such as RRT* [9] introduced the
property of asymptotic optimality – if we spend more
runtime, the solutions get better and converge to op-
timal paths. This means, probabilistic approaches are
in principle suitable situations that require changes
of driving directions. However, they have to face two
problems: first, the integration of new configurations
into a tree of configurations only considers local op-
timality. The respective connections try to optimize
the costs for the small part of the tree that covers the
closer area of the new configuration. It is not probable
that costly turning maneuvers or driving to free plac-
es are thus considered in the first place. As a result,
even though an approach is asymptotically optimal,
adequate routes are considered very late. The second
problem: in a small scale, we still have to introduce
turning maneuvers to connect new configurations. In
RRT or RRT*, this problem was abstracted away by
procedures called steer or rewire, however must be
actually implemented to also work for complex turn-
ing situations.

3. Fundamentals
Our goal is to create a deterministic planning ap-
proach based on a two-phase planning [19].

Navigation

Trajectory Planning

Trajectory Regulation

Start, Target Conf.
Route Points

Trajectories

Driving
Commands

Current Pose

Odometry

SLAM

Evaluator

Sensors

Sensor
Input

Motion Task

Obstacle
Map

Slippage
Factors

Trajectory
Execution

Slippage
Compensation

Motion System

Fig. 2. Motion Planning Components

We start with the architecture of the motion plan-
ning and execution (Fig. 2). The Navigation compo-
nent provides a point-to-point route planning in the
workspace. The Trajectory Planning computes a driv-
able sequence of trajectories between configurations
and considers non-holonomic constraints. The Eval-
uator computes costs of paths based on the obstacle
map and the desired cost properties – a certain robot
application may plug-in its own Evaluator into the
system. Cost values may take into account the path
length, expected energy consumption or the amount
backwards driving. Also, the distance to obstacles
could be considered, if, e.g., we want the robot to keep
a safety distance where possible.

20

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 4 2021

Articles20

The lower components are not focus of this paper:
The Trajectory Regulation permanently tries to hold
the planned trajectories, even if the position drifts off
due to slippage. Simultaneous Localization and Map-
ping (SLAM) constantly observes the environment
and computes the most probable own position and
location of obstacles by motion feedback and sensors
(e.g., Lidar or camera). The current error-corrected
configuration is passed to all planning components.
Observed and error-corrected obstacle positions are
stored in the Obstacle Map. The Motion System finally
is able to execute and supervise driving commands.

3.1. Basic Considerations
We assume the robot drives in the plane in a work-
space W with positions (x, y). The configuration space
C covers an additional dimension for the orienta-
tion angle, i.e., a certain configuration is defined by
(x, y, θ). The goal is to find a collision-free sequence of
trajectories that connects two configurations, mean-
while minimizes the costs.

This problem has many degrees of freedom. Every
two positions can be connected by an infinite number
of trajectories and the problem gets worse for larger
environments with obstacles. We thus introduce the
following concepts:
• A route planner that solely operates on workspace

W computes a sequence of collision-free lines
of sight (with respect to the robot’s width) that
minimize the costs.

• As the route planning only computes route points
in W, we have to specify additional variables in C
(here orientation θ). From the infinite assignments,
we only consider a small finite set.

• From the possible set of trajectories between
two route points, we only consider a small set of
maneuvers. Maneuvers are trajectories, for which
we know formulas that derive the respective
geometric parameters.

• Even though these concepts reduce the problem
space to a finite set of variations, this set is by
far too large for complete checks. We thus apply
a Viterbi-like approach that significantly reduces
the number of checked variations.
We carefully separated the cost function from all

planning components. We assume, we are able to as-
sign costs to any route or trajectory sequence accord-
ing to two rules: First, we must be able to define a to-
tal order on costs. This is required, as we iteratively
compare routes or trajectory sequences and identify
the ‘best’ one from a set of candidates. Second, a colli-
sion with obstacles has to result in infinite costs.

3.2. Primitive Trajectories and Maneuvers
The basic movement capabilities of a robot are de-
fined by a set of primitive trajectories. The respective
set can vary between different robots. E.g., the Carbot
[20] is able to execute the following primitive trajec-
tories:
• L(): linear (straight) driving over a distance of 

(that may be negative for backward);
• A(, r): drive a circular arc with radius r (sign

distinguishes left/right) over a distance of  (that

may be negative for backward);
• C(, κs, κt): clothoid over a distance of  with given

start and target curvatures.
We are able to map primitive trajectories directly

to driving commands that are natively executed by the
robot’s motion subsystem.

Implicitly, primitive trajectories specify functions
that map configurations cs to ct. Due to non-holonomic
constraints, for given cs, ct∈C there is usually no prim-
itive trajectory that maps cs to ct. At this point, we in-
troduce maneuvers. Maneuvers are small sequences
of primitive trajectories (usually 2 to 5 elements) that
are able to map given cs, ct∈C. More specifically:
• A maneuver is defined by a sequence of primitive

trajectories (e.g., denoted ALA or AA) and further
constraints. Constraints may relate or restrict
geometric parameters.

• For given cs, ct∈C there exist formulas that specify
the geometric parameters of the involved primitive
trajectories, e.g.,  for L, A and C, r for A, κs, κt for C.

• Sometimes, the respective equations are
underdetermined. As a result, multiple maneuvers
of a certain type (sometimes an infinite number)
map cs to ct. Thus, we need further parameters, we
call free parameters to get a unique maneuver.
Until now, we identified about thirty maneuvers

of which Fig. 3 shows six. We assigned names that
illustrate the maneuvers’ shape, e.g., the J-Arc drives
a path that looks like the letter ‘J’. The Dubins-Arcs
correspond to the combination of three arcs of Dubins
original approach [3].

J-Arc
(LA)

J-Arc2
(AL)

S-Arcs (AA)

∫-Arcs (ALA)

Wing-Arc
(LAL)

Dubins-Arcs (AAA)

Ta
rg

et

Target

Target

Fig. 3. Example Maneuvers

Let Π denote the set of maneuver types relevant for
a certain scenario or application. Note that Π can eas-
ily be extended or reduced to reflect to robot’s driv-
ing capabilities. E.g., a certain robot may not support
clothoids. In this case, we could remove all maneuvers
that contain a C primitive from Π.

3.3. Finding an Optimal Variation
Let p1=(x1, y1)…pn=(xn, yn) denote a route found by
the route planning component for a start (p1, θ1) and
target (pn, θn). Our problem is to find a sequence of

21

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 4 2021

Articles 21

maneuvers that connects start, target and all route
points p2,... pn-1 in-between.

Of the infinite number of intermediate orienta-
tions and maneuver parameters we define a finite
set of promising candidates. This obviously leads to
sub-optimal results. In reality, however, it does not
significantly affect the overall costs. Let Oi denote all
orientation candidates for a route point i≥2. We sug-
gest variations of angles from the previous and to the
next route point (Fig. 4).

αi-1

±22.5°

pi

pi+1

pi-1

pi

pi+1

pi-1

pi

pi+1

pi-1

pi

pi+1

pi-1

αi

αi-1+αi

2 αi-1+αi

2

Fig. 4. Generation of Orientation Candidates

For free parameters we distinguish the small set
of variations for arc senses (e.g., two for J-Bow) and
the infinite set for arc radii (e.g., for Wing-Arc). For
the first type we are able to iterate through all vari-
ations. For the second type, we select a small set of
candidates, similar to orientation angles. We suggest
{rmin, 3⋅rmin, 5⋅rmin}, where rmin is the minimal curve ra-
dius. Let params(M) denote the set of parameters for
a maneuver type M∈Π. For maneuver types with no
free parameters, we define params(M)={∅}, whereas
∅ is an empty parameter setting.

Even though we now have a finite set of variations
Π × Oi × params(M) for a single route step, the total
number still is too large for a complete check. To give
an impression: for 5 route points we get a total num-
ber of 20 million, for 20 route points 2⋅1037, for an
average of 20 maneuvers and 5 intermediate angles.
Obviously, we need an approach that computes a re-
sult without iterating through all permutations.

Our approach [19, 21] is inspired by the Viterbi
algorithm [23] that tries to find the most likely path
through hidden states. Our adaption looks for a se-
quence of maneuvers/orientations/free parameters
that connects them with minimal costs.

A Viterbi-like approach is suitable, because opti-
mal paths have a characteristic: the interference be-
tween two primitive trajectories in that path depends
on their distance. If they are close, a change of one
usually also causes a change of the other. This is be-
cause a certain maneuver influences its end-orienta-
tion and thus the start-orientation of the next maneu-
ver. If they are far, we may change one trajectory of the
sequence, without affecting the other. Viterbi reflects
this characteristic, as it checks all combinations of
neighbouring maneuvers to get the optimum.

Fig. 5 illustrates the idea. Starting with (p1, θ1) it
iteratively finds optimal maneuvers to (pi, θij). For the
multiple intermediate angles Oi={θi1, θi2, …}, we keep
optimal trajectory sequences to each of these angles
in a list S. Because the number of trajectories in S only
depends on the last route point (and in particular not
on the route before), the runtime and memory usage
is of O(n).

For a new route step pi+1, we again have to check
multiple orientation angles of Oi+1. For this, we try to
extend all trajectory sequences in S by maneuvers. I.e.,
we compute all possible maneuver types in Π with
possible parameters to get to (pi+1, θi+1,j). We store the
optimal trajectory sequences to each of the orienta-
tion angles in a new list S’ that forms the S for the next
iteration.

In the last step we have On={θn}, i.e., we only have
to check the single target angle. Thus, if there is at
least one trajectory sequence found, we get |S|=1 and
the optimal sequence is the single element of S.

4. The New Approach
We want to extend the current two-phase approach
to also support situations that require changes of
driving directions. The maneuver-based trajec-
tory planning is a solid foundation to integrate new
mechanisms for required paths. Our approach can be
summarized as follows:
• We integrate new turning maneuvers, required to

change the driving direction.
• We extend the Viterbi-based optimization to find

one or two backdriving sequences, if required.

pi
θi1

θi2

θi3

pi+1

θi+1,1

θi+1,2

θi+1,3

pi

pi

pi-1

pi-1

pi-1

pi+1

pi+1

Check all Π x Oi x params to find
the maneuver with minimal
costs to (pi+1, θi+1,1)

… to (pi+1, θi+1,2)

… to (pi+1, θi+1,3)

S

S'

Fig. 5. Idea of Viterbi-Optimization

• We integrate a mechanism to find free places for
turning maneuvers, when start and target are only
connected by narrow paths.

• The new mechanisms are integrated by a software
structure that supports multi-strategy planning.
Note that, whenever backdriving is required, a max-

imum of two backdriving sequences is sufficient for op-
timal paths. We come back to this point in section 4.2.

4.1. Special Turning Maneuvers
The trajectory planner prefers forward driving as long
as possible, if the cost function indicates this. Sensors
that map the environment or prevent collisions often
point in driving direction. Thus, it is reasonable to re-
ward forward driving. A change of driving direction
requires stopping the motors that interrupts a smooth
driving. A typical cost function penalizes a switch of
forward to backwards driving and vice versa.

22

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 4 2021

Articles22

However, the change of driving directions is not
always avoidable. As a first goal, we have to introduce
new maneuvers that change between driving forward
and backwards and vice versa. In daily life we are fa-
miliar with parking or turning maneuvers in the con-
text of car driving that have a similar objective. For
our planning approach, we identified three turning
maneuvers (Fig. 6):
• One-Bow-Turn (LAL): an arc (usually with a larger

turning angle) is embedded into two linear
trajectories. The change of driving direction is at
start or end of the arc.

• Two-Bow-Turn (AAL): two arcs with turning angle
nearly 90° are connected by a change of driving
direction. The linear trajectory is required to reach
any target position.

One-Bow-Turn

Start

Two-Bow-Turn

Parking

Linear Arc
fore back

fore
back

Start

Start

Start

Start

Target

Start
Start

Fig. 6. New Turning Maneuvers

• Parking (LAA): After a linear trajectory we have
a change of drive direction. Two arcs (left/right
or right/left) are then driven to reach the target
position.
All these maneuvers have the single arc radius or

the two arc radii as free parameters. For Two-Bow-
Turn and Parking we require the same radius for both
arcs to get a unique maneuver. Fig. 7 illustrates the
constructions. We require the following geometric
computations:
• (A) Shift the straight line through the robot’s pose

by r to left or right.
• (B) Creation of a circle (left or right) with radius r

that touches the robot’s position and has the
robot’s orientation as tangent.

• (C) Intersection of two straight lines.
• (D) Intersection of straight line and circle.

For the Bow-Turn we apply projections (A) to start
and target pose. The intersection of these (C) creates
the arc centre. Note that of the four variations (start
or target, left or right) of the (A) projections, two do

not change the driving direction. Of the remaining
two, we chose the one with least costs.

For the Two-Bow-Turn we create the start arc using
(B). We then intersect (D) a circle with radius 2r and
the arc centre with the target straight line projection
(A). The intersection is the second arc’s centre. For
Parking we apply the reverse construction: the start
straight line projection (A) is intersected (D) with the
target circle (B).

Start

Two-Bow-
Turn

Parking
Start

One-Bow-Turn

r

(A) (B) (C) (D)

Fig. 7. Construction of Turning Maneuvers

For Two-Bow-Turn and Parking we have four varia-
tions: left/right of straight line projection and left/ right
of the created start or target circle. Of these, two do not
change the driving direction in the required manner. Of
the remaining two, we chose the one with least costs.

Of course, all constructions (A) to (D) have to be
mapped to formulas; fortunately, all have closed solu-
tions (linear or quadratic).

4.2. Planning Backdriving
The next question is how to integrate the turning ma-
neuvers into paths. In the following, we assume that
forward driving is preferred over driving backwards.
We further assume, if a robot is able to drive forward
though an environment, it may also be able to drive
backwards on the same trajectory. This means, the
robot’s geometry (e.g., concerning clearance width)
is not different for the two driving directions. This is
true for most robots.

Fig. 8a) shows, how turning maneuvers can be in-
tegrated into a trajectory sequence for different cases
of start and target directions.
• The trajectory sequence can entirely be driven

forward.
• The trajectory sequence can entirely be driven

backwards – this may be a result of short route or
no place for a turning maneuver.

• The trajectory sequence contains a single turning
maneuver. This happens, if start and target can

23

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 4 2021

Articles 23

only be accessed by a certain driving direction,
and this is different for start and target.

2 Turnings

1 Turning0 Turnings
Start Target Start Target

a) Cases for turning maneuvers

b) Replacement of multiple turning maneuvers

Fig. 8. Different Classes for Turning Maneuvers

• The trajectory sequence contains two turning
maneuvers. This happens, if the start can only be
left and target can only be reached by backwards
driving. Moreover, there may be place for two
turning maneuvers and the costs of forward
driving pays off.
On the first glance, there may be more than two

turning maneuvers. However, as a consequence of our
assumptions, we get a maximum two: if we had three or
more, we can always remove a sequence with an even
number that start with driving backwards (Fig. 8b).

The most complex situation is presented in Fig. 9.
Here, we want to switch to forward driving as soon as
possible, i.e., as far as there is a place for the turning
maneuver. In addition, we want to switch to backdriv-
ing as late as possible.

Our approach of Viterbi-optimization is able to
create the respective trajectory sequence, if we add
one modification: in addition to the orientation candi-
dates (Fig. 4) we consider the reverse angles (i.e., the
angles plus 180°). This modification creates sufficient
candidates to integrate one or two turning maneu-
vers, if required.

We have to justify, why this modification in rela-
tion with the Viterbi approach creates the turning
maneuvers at optimal places. Remember that the
Viterbi approach iteratively goes through the work-
space positions, meanwhile keeps optimal trajectory
sequences to all configurations at the last considered
position. I.e., at each last point, we know how to reach
it in forward and backwards orientation (and further
graded angles in-between). We have to consider two
effects: 1) the switch to forward driving (if it is re-
quired in the sequence) is as early as possible, and 2)

the switch to backwards driving (if it is required in
the sequence) is as late as possible.

Route Line String

Final Trajectory Sequence

Configuration Space Alternatives

Viterbi Optimiziation ...Viterbi Optimiziation...

...Viterbi Optimiziation

Both
directions
possible

Fore-driving
has least costs

to get to

At this point
again both
directions
possible

Only backdriving
possible from to

target

TargetStart TargetStart

TargetStart

TargetStartTargetStart

TargetStart

Fig. 9. Planning of Backdriving with Viterbi-Optimization

Target

Start

Target

Start

Fig. 10. Failure Situation (left) and Desired Trajectory
Sequence (right)

1) This effect occurs, if the environment prohibits
forward driving when leaving the starting area.
This means, forward driving configurations are
considered in one step, but no single maneuver
is able to reach it, as long as the robot is in the
narrow area. But as soon as possible, the respective
turning maneuver is taken into account. In the
following iterations, both driving directions are
expanded simultaneously, however at a certain
point, forward driving causes least costs.

2) Shortly before entering a narrow target area, multiple
orientations are considered, but even backdriving
orientations may be reached with least costs, if all
orientations before were forward orientations. When
entering a narrow area, both driving directions still
are considered simultaneously. However, if the final
target can only be an extension of the backdriving
variation, the last possible position for changing the
direction is planned.
As we can see here, we still are able to create the

trajectory sequence step by step in a greedy manner
without loosing optimality. As a last point, we have to
discuss a more technical problem. Usually, the naviga-
tion tries to produce as few as possible route points,

24

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 4 2021

Articles24

as the number influences the computation speed
of the second planning phase. This may cause large
distances between route points, if, e.g., the robot is
able to drive straight in a hallway. The problem: the
change of forward and backwards driving can only be
planned at a route point computed by the navigation
component. Thus, on large route sections, the planner
often does not have a chance to identify an appropri-
ate position. To solve this, we have to artificially inte-
grate route points, if a distance exceeds a certain lim-
it. For this, we can simply cut a large section linearly.

4.3. Free-Place Turnings
The approach until now is able to plan trajectory
sequences with partial backwards driving on direct
routes. However, there exist scenarios where the
workspace route cannot be extended to the configu-
ration space (Fig. 10).

This problem occurs, when a turning maneuver is
required, but no route point offers enough space for
its integration. This may require arbitrary long de-
tours far away from the direct route: imagine a maze
where the robot first has to drive outside to find an
appropriate place for a turning maneuver.

An observation: the maximum of turning maneu-
vers outside the workspace route is one. This is be-
cause the situation only occurs, when both start and
target are inside the same narrow area and a single
turn outside this area is sufficient. Thus, we can formu-
late a solution as follows: find a turning position that
• offers sufficient space for a turning maneuver and
• generates minimal route costs for the sum of start

to turning position and turning position to target.
Here, we do not want to iterate through all places,
meanwhile calling the route planning two times. Our
approach is based on the idea presented in [18] and
extends the A* route planning approach [8].

A* Point to Point Planning. To understand our
approach, we first have to briefly describe the tradi-
tional route planning based on A*. First, we have to
map the environment on a graph with nodes qi. This
requires a kind of discretization. There exist several
methods to do this, e.g., using a grid [4], Voronoi re-
gions [6] or visibility graphs [24].

In a second step we have to assign cost values to
edges between connected nodes, denoted c(qi, qj).
We furthermore have to provide a lower cost limit
estimation between two nodes, denoted h(qi, qj). Let
further c*(qi, qj) denote the costs of the optimal route.
Our goal is now to compute c*(start, target) and the
respective sequence of nodes.

The actual route computation by A* iteratively
assigns three ‘states’ to the node: not_visited means,
there is no knowledge how to reach it from the start;
open means, we know at least one route from the
start; closed means: we are sure how the reach a node
from the start by an optimal route. Obviously, we ter-
minate, when the target has been closed. To control
the state changes, we need an array g[qi] that is
• ∞, if qi is not_visited,
• c*(start, qi), if qi is closed,
• not less than c*(start, qi), if qi is open.

Let further denote f[qi]=g[qi]+h(qi, target). A* is
based on a key observation: for the qi with the lowest
f[qi], we get g[qi]=c*(start, qi). As a result, we can as-
sign the closed state to this node. In addition, we iter-
ate through all neighbours qj of qi and check, if qj can
be reached with least costs going over qi. We further
assign the open state to all non-closed neighbours of
qi. Finally, every node gets a backlink entry that points
to the neighbour over which a node is accessed on an
optimal route from the start.

To quickly find the qi with lowest f[qi], we need
an efficient structure, e.g., the priority queue, that is
based on types of ordering the open nodes.

Routes Through Free Places. We now want to
route over a free place, sufficiently large to enable
a turning maneuver. More formally, we search a free
place node I that minimizes

 c*(start, I)+c*(I, target) (1)

As an additional property, the resulting costs must be
below a certain cost limit, relative to the direct path.
This is useful as we may consider any path that re-
quires too much driving costs as failure and report
this to the application. The developer thus defines
a factor v and we only consider I with

 c*(start, I)+c*(I, target) ≤ v⋅opt (2)

where opt=c*(start, target) denotes the optimal route
costs. This means, the set Φ of all nodes that are can-
didates as free place is

 Φ(start, target, v) =
 {I | c*(start, I)+c*(I, target) ≤ v⋅opt} (3)

The remaining section describes, how we efficiently
compute Φ and thus implicitly the routes from start to
I and from I to target. A first observation: from

 c*(start, I)+c*(I, target) ≤ v⋅opt (4)

and

 f[qi]=g[qi]+h(qi, target)=c*(start, qi)+h(qi, target)
 ≤c*(start, qi)+c*(qi, target) (5)

which is true, because h(qi, target)≤c*(qi, target), fol-
lows

 f[qi]≤v⋅opt (6)

As the f-value of the next node in the open list cannot
get smaller, we can stop, when we poll a node with an
f-value larger than v⋅opt. Because we do not know opt
from the beginning, we first expand nodes (accord-
ing to A* [8]) until we polled the target node. Then,
we visit more nodes, as far as we get the first node
with f>v⋅opt. As a consequence, the field goes beyond
the target. This is reasonable, as those nodes are also
candidates for I. Algorithm 1 sums up these consider-
ations and shows, how to compute the start field. To

25

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 4 2021

Articles 25

clearly distinguish the respective structures, we apply
an index s to all start field arrays.

In a second round, we have to generate a target
field with index t (Algorithm 2). The approach is simi-
lar to Algorithm 1, but in order to apply the appropri-
ate ordering of route nodes, we have to incorporate
these changes:
• The first open node is the target.
• Whenever we expand a node qi, we check the

distance from the neighbour qj, i.e., c(qj, qi,), not to
the neighbour.

• The estimation h is computed from start to the
respective node.

• The sequence of backlink entries points to the
target not to the start.
In addition, we can directly use the opt value of the

start field. Moreover, the target field generation can
benefit from a much better estimation h compared to
the start field (see (*) in Algorithm 2): we set h=gs[qj]
whenever gs[qj]≥0. This does not change the result,
but significantly reduces the number of visited nodes
for the target field, thus significantly improves the
runtime. Using the gs for h does not only provide an
estimation, but returns the real costs, thus is the best
considerable estimation.

The start and target field generation produce
gs[qi] =c*(start, qi) for all qi with states[qi]=closed and
gt[qi]= c*(qi, target) for all qi with statet[qi]=closed. As
a consequence, we are now able to provide an effi-
cient formula for Φ:

 Φ(start, target, v) = {qi | states[qi]=statet[qi]=closed
 and gs[qi]+gt[qi] ≤ v⋅opt} (7)

This approach is by far more efficient than an ap-
proach that iteratively computes two optimal routes
for every node I in the graph.

In order to find an appropriate turning place,
we need to evaluate the property of ‘free space’ for
a node. As the trajectory planning is an additional
step, we do not know the actual required space to
drive a turning maneuver. However, we can find an
appropriate simplification that can be evaluated in
workspace. E.g., we can estimate the clearance space
required by a turning maneuver through a node us-
ing simulations. We furthermore are able to decide,
whether a node has sufficient distance to the closest
obstacle. This is required anyway to create an initial
graph, as a node represents a single point in work-
space, but the robot has a certain geometric extent. To
sum up, we are able to efficiently decide, if a certain
node has sufficient distance for a turning maneuver.
Let free(qj) denote this property.

We now can put all together. We compute

 Iopt = arg min (gs[I]+gt[I])
 I∈ Φ,free(I) (8)

For this, we first compute Φ with formula (7) sort-
ed by gs[qi]+gt[qi]. We then iterate though Φ starting
with the smallest value. For each we test free(qj) until
we get a hit.

4.4. Multi-Strategy Planning
Until now, we considered different approaches to get
from start to target, namely
• workspace route planning: with or without routing

over free places, assigning different values for v.
• trajectory planning: with or without reverse angle

candidates, different sets of maneuvers, with or
without turning maneuvers.

This produces a large set of possible settings to com-
pute a trajectory sequence. Because more complex
approaches such as finding a free place request more

• trajectory planning: with or without reverse
angle candidates, different sets of maneuvers,
with or without turning maneuvers.

This produces a large set of possible settings to com-
pute a trajectory sequence. Because more complex ap-
proaches such as finding a free place request more run-
time, we do not want to start with such an approach. In
real scenarios, most of the planning tasks are still of a
simple type. Thus, we should not spend too much
planning time for these.

We want to support developers of corresponding
applications to express planning tasks. A developer
could define a list of rules, e.g.:

• If a planning without free places and without
reverse angle candidates is successful, take
the respective result.

• If not, consider reverse angle candidates.
• If this still is not successful, additionally inte-

grate turning maneuvers.
• If this still is not successful, try the route plan-

ning through a free place in combination with
reverse angle candidates and turning maneu-
vers.

We get even more variations, if we deal with different
route planning approaches (e.g., grid, Voronoi regions
or visibility graphs), different safety distances to ob-
stacles, or different candidates for desired curve radii.
To gain control over the multitude of possibilities, we
suggest a software architecture that allows the devel-
oper to express rules to combine them. Our approach
is based on two key ideas:

• First, we consider a pair of workspace route
planning and trajectory planning as a single
planner component. This takes start and tar-
get configurations (Fig. 11 left).

• Second, we hierarchically build new planning
components that internally contain own plan-
ners, but their interface still appears as a sin-
gle planner (Fig. 11 right).

Encapsulating the two planning phases by a single
component allows us even to integrate alternative ap-
proaches for single-step planning such as probabilistic
trajectory planning [9, 12].

The hierarchical components are not restricted to
two levels – there can be any deep nesting. A Selector
controls, which inner planning components may be
executed and how multiple inner results are combined

Algorithm 1. Start field generation
start_field(start, target, v)
gs[start]0; fs[start]0; states[start]open;
openList.add(start); // add start to open
for all qistart { // initialize fields
 gs[qi] -1; fs[qi]0; states[qi]not_visited;
}
optundefined; // costs for optimal route first unknown
do {
 qiopenList.poll(); // get open qi with minimal fs[qi]
 if opt is defined and fs[qi]>vopt // this cannot be an I
 return success; // going over I is too costly: finish
 if qi=target optgs[qi]; // route to target found: set opt
 states[qi]closed;
 for all neighbours qj of qi { // expand node according A*
 if states[qj]closed {
 gnewgs[qi]+c(qi, qj);
 fnewgnew+h;
 if states[qj]=not_visited or fnew<fs[qj] {
 gs[qj]gnew; fs[qj]fnew; // start→qi→qj is less costly
 backlinks[qj]qi; // than the formerly stored route
 states[qj]open;
 openList.add(qj); // if already added, update f
 }
 }
 }
} while not openList.isEmpty();
return failure; // no route at all from start to target

Algorithm 2. Target field generation
target_field(start, target, v)
gt[target]0; ft[target]0; statet[target]open;
openList.add(target); // add target to open
for all qitarget { // initialize fields
 gt[qi] -1; ft[qi]0; statet[qi]not_visited;
}
do { // Note: opt is known from start field
 qiopenList.poll(); // get open qi with minimal ft[qi]
 if ft[qi]> vopt // this cannot be an I
 return success; // going over I is too costly: finish
 statet[qi]closed;
 for all neighbours qj of qi { // Note: driving direction is qj→qi !
 if statet[qj]closed { // expand node
 gnewgt[qi]+c(qj, qi); // Note: costs from qj→qi !
 if gs[qj]0 // (*) estimation start to qj available
 hgs[qj]; // i.e., the real costs, from start field, gs
 else
 hh(start, qj); // not available: compute h yourself
 fnewgnew+h; // Note: h estimates start→qj !
 if statet[qj]=not_visited or fnew<ft[qj] {
 gt[qj]gnew; ft[qj]fnew;// qj→qi→…→target is less costly
 backlinkt[qj]qi; // than the formerly stored route
 statet[qj]open;
 openList.add(qj); // if already added, update f
 }
 }
 }
} while not openList.isEmpty();
return failure; // no route at all from start to target

Fig. 11. Software Structure for Planning

Planning
interface

Start Pose
Target Pose

Trajectory
Sequence

Route Points

only
Positions

Workspace
Navigation

Trajectory
Planning

Evaluator
(considers obstacles)

evaluate evaluate

Planning
interface

Start Pose
Target Pose

Trajectory
Sequence

Planning 2

Selector

Planning 1 ...

Evaluator
(considers obstacles)

26

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 4 2021

Articles26

runtime, we do not want to start with such an ap-
proach. In real scenarios, most of the planning tasks
are still of a simple type. Thus, we should not spend
too much planning time for these.

We want to support developers of corresponding
applications to express planning tasks. A developer
could define a list of rules, e.g.:
• If a planning without free places and without

reverse angle candidates is successful, take the
respective result.

• If not, consider reverse angle candidates.
• If this still is not successful, additionally integrate

turning maneuvers.
• If this still is not successful, try the route planning

through a free place in combination with reverse
angle candidates and turning maneuvers.

We get even more variations, if we deal with different
route planning approaches (e.g., grid, Voronoi regions
or visibility graphs), different safety distances to ob-
stacles, or different candidates for desired curve radii.
To gain control over the multitude of possibilities, we
suggest a software architecture that allows the devel-
oper to express rules to combine them. Our approach
is based on two key ideas:
• First, we consider a pair of workspace route

planning and trajectory planning as a single
planner component. This takes start and target
configurations (Fig. 11 left).

• Second, we hierarchically build new planning
components that internally contain own planners,
but their interface still appears as a single planner
(Fig. 11 right).

Encapsulating the two planning phases by a single
component allows us even to integrate alternative ap-
proaches for single-step planning such as probabilis-
tic trajectory planning [9, 12].

Planning
interface

Start Pose
Target Pose

Trajectory
Sequence

Route Points

only
Positions

Workspace
Navigation

Trajectory
Planning

Evaluator
(considers obstacles)

evaluate evaluate

Planning
interface

Start Pose
Target Pose

Trajectory
Sequence

Planning 2

Selector

Planning 1 ...

Evaluator
(considers obstacles)

Fig. 11. Software Structure for Planning

The hierarchical components are not restricted to
two levels – there can be any deep nesting. A Selec-
tor controls, which inner planning components may
be executed and how multiple inner results are com-
bined to a single result. Until now, we developed two
hierarchical components:
• Best-costs: all inner components execute the

planning tasks and the inner result with best costs
is returned as the component’s total result.

• First-success: the inner planning components are
executed one after the other in a given order and
the first successful planning is returned as the
component’s total result.

Fig. 12. The Carbot

A developer may make a choice based on available
computational resources and runtime restrictions.
The best-costs component requires to run all inner
planning components, but this can be parallelized,
if the runtime system supports it. The first-success
component safes computational power, if there is
a high probability for successful inner planning com-
ponents that are checked first. However, the final re-
sult may be sub-optimal.

5. Experiments
We implemented the approach on our Carbot robot
(Fig. 12). It has a size of 35 cm × 40 cm × 27 cm and
a weight of 4.9 kg. It is able to run with a speed of
31 cm/s. The wheel configuration allows to indepen-
dently steer two wheels. For arcs, the different num-
bers of revolutions of the powered front wheels as
well as the steering angles of the steered rear wheels
are adapted to follow the respective curve geometry.

A rotating Lidar device (Slamtec RPLidar A2M4)
on top is used for world modelling. It scans the 360°
degrees in 0.9° steps, i.e., produces 400 distance
points per rotation. The sample frequency is 4000
measurements per seconds, i.e., 100 ms for every
scan of 360°. The range is 0.15 to 6.00 m with a reso-
lution of smaller than 0.5 mm.

We run the experiments in our simulation envi-
ronment that simulates the robot on hardware-level
[20]. It is very close to the real robot. E.g., the same
binary code runs on the real robot and simulator. Mo-
tors and sensors are simulated on low levels. E.g., the
simulated and real motors have the same I2C com-
mand interface. Typical sensor errors and physical
effects such as slippage can be applied.

We used the simulator to create situations where
complex turning situations occur. Without the simu-
lator it would be very difficult to create environments
that systematically challenge the mechanisms pre-
sented above.

Fig. 13 shows characteristic environments. Situ-
ation a) is the most simple: as the required turning
maneuver can be applied at the penultimate route
section, the Viterbi approach checks a change of driv-
ing direction without any further mechanisms.

27

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 4 2021

Articles 27

Situations b) and c) are more complex: a Viter-
bi-optimization that only considers forward driving
would fail, as we need to drive backwards for a longer
time to get into the parking position. Thus, we addi-
tionally require the reverse angle candidates. Note
that for the entire driving in the narrow hallway, for-
ward as well as backwards driving is considered as
suitable direction. Only at the end, the forward driv-
ing candidate (and thus the corresponding trajectory
sequence in the hallway) is removed and solely the
presented sequences in the figure remain.

In situation d) it pays off to integrate two changes
of directions. This is because, we have two places that
support the turning maneuvers and their distance is
large enough. Note that sequences with two turning
maneuvers are only planned, if the cost function pe-
nalizes backwards driving, otherwise entirely driving
backwards would be a more suitable solution.

Situations e) and f) require free-place turnings. In
e), as a first try, the direct (workspace) connection is
preferred over the large route around the mid square.
However, any trajectory planning based on the direct
connection failed, as not any turning maneuver can be

integrated. Our multi-strategy planning then tries the
free-place planning. The nearest free place is the area
on the left. The corresponding two routes, one from
start to free place and one from free place to target
now can easily be planned. Situation f) is the same as
situation c) apart from the start position. In f) the ro-
bot first has to fully drive outside the long hallway to
integrate the turning maneuver. This situation should
illustrate that in worst case, a free turning place can
be far away from start and target.

In these situations, the robot already knows all
involved obstacles. Either the robot has investigated
the map before or an obstacle map was given. In many
scenarios, however, the robot has to find a path even
though the map is unknown or only partly known. In
such scenarios, we have two options: either the robot
first has to explore the environment or the robot ap-
plies an iterative routing approach. The next exper-
iment illustrates the latter case. The robot should
leave a maze that is unknown at the beginning. Dur-
ing driving, the Lidar scanner discovers new obstacles
that are included into the robot’s map.

b)a)

d)

c)

e)

Target

Target

Start

Obstacle
Workspace Route

L Linear Trajectory

A
Arc Trajectory

A~ Arc Trajectory with
opposite turning
direction

Robot Change of Driving
Direction

Target

Start

Target

Start

Target

Start

Start

Start Target

f)

Fig. 13. Complex situations

28

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 4 2021

Articles28

The iterative routing approach works as follows:
a trajectory sequence is planned on the partly known
map, whereas undiscovered areas are for the moment
considered as obstacle-free. As a result, large parts of
the route go straight through currently undiscovered
obstacles.

While driving, the robot permanently checks, if the
formerly planned trajectories now go though newly
discovered obstacles. Corresponding collisions re-
quire a new planning. To reduce the number of plan-
ning calls, we wait, until the distance between robot
and collision are below a given threshold.

Fig. 14 shows some snapshots when the robot
searches a way out of a narrow maze. We can easily
see straight trajectories going through unknown are-
as. We also see the integration of turning maneuvers.
This, e.g., occurs, when the robot drives into a dead
end, drives backwards when leaving the dead-end
and wants to continue driving forward.

Note that a route with two turning maneuvers and
a route through a free place only rarely occur in the
situation of iterative routing. This is because the map
in the area of the target is unknown and thus all for-
ward trajectories first can be planned without collid-
ing with obstacles.

Fig. 14. Leaving a Maze

6. Conclusion
Complex turning situations that require changes
of driving directions are crucial. They may lead to
lengthy paths, long planning time, or even worse,
a complete failure of the planning component. We
suggested a solution built upon our maneuver-based
planning with Viterbi-optimization.

We integrate new turning maneuvers, extend the
optimization approach to create up to two backdriv-
ing sequences and are able to find free places for
turning maneuvers. A software structure supports
multi-strategy planning. With this, the planning com-
ponent is able to react to the degree of complexity:
for simple situations (still the majority), a simple and
quick planning strategy still is sufficient. Only if this
fails, more complex strategies are activated. The ap-
plication developer can pre-define the adaptive ac-
tivation of strategies in a fine-granular manner. We
successfully implemented the approach on our Carbot
platform.

AUTHOR
Jörg Roth – Faculty of Computer Science, Nuremberg
Institute of Technology, Nuremberg, Germany, e-mail:
joerg.roth@th-nuernberg.de.

REFERENCES
[1] L. Barraquand, B. Langlois and J. -C. Latombe,

“Numerical potential field techniques for ro-
bot path planning”, IEEE Trans. on Syst., Man.,
and Cybern., vol. 22, no. 2, 1992, 224–241,
10.1109/21.148426.

[2] J. D. Boissonnat, A. Cerezo and J. Leblond, “A note
on shortest paths in the plane subject to a con-
straint on the derivative of the curvature”, Re-
search Report 2160, Inst. Nat. de Recherche en
Informatique et an Automatique, 1994.

[3] X. N. Bui, J. D. Boissonnat, P. Soueres and J. P. Lau-
mond, “Shortest Path Synthesis for Dubins Non-
-Holonomic Robot”. In: IEEE Conf. on Robotics
and Automation, San Diego, CA, USA, 1994, 2–7,
10.1109/ROBOT.1994.351019.

[4] M. Čikeš, M. Đakulović and I. Petrović, “The path
planning algorithms for a mobile robot based
on the occupancy grid map of the environment
– A comparative study”. In: XXIII Intern. Sym-
posium on Information, Communication and
Automation Technologies, Sarajevo, 2011, 1–8,
10.1109/ICAT.2011.6102088.

[5] L. E. Dubins, “On curves of minimal length with
a constraint on average curvature and with pre-
scribed initial and terminal positions and tan-
gents”, American Journal of Mathematics, vol. 79,
no. 3, 1957, 497–516, 10.2307/2372560.

29

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 15, N° 4 2021

Articles 29

[6] S. Garrido and L. Moreno, “Mobile Robot Path
Planning using Voronoi Diagram and Fast Mar-
ching”, Robotics, Automation, and Control in
Industrial and Service, 2015, 10.4018/978-1-
4666-8693-9.

[7] T. Gu and J. M. Dolan, “On-Road Motion Planning
for Autonomous Vehicles”. In: Su, CY., Rakheja,
S., Liu, H. (eds) Intelligent Robotics and Appli-
cations. ICIRA, 2012, 588–597, 10.1007/978-3-
642-33503-7_57.

[8] P. E. Hart, N. J. Nilsson and B. Raphael, “A Formal
Basis for the Heuristic Determination of Mini-
mum Cost Paths”, IEEE Transactions on Systems
Science and Cybernetics, no. 2, 1968, 100–107,
10.1109/TSSC.1968.300136.

[9] S. Karaman and E. Frazzoli, “Incremental sam-
pling-based algorithms for optimal motion plan-
ning”, Robotics Science and Systems, no. VI 104.2,
2010, 10.48550/arXiv.1005.0416.

[10] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli and
S. Teller, “Anytime Motion Planning using the
RRT*”. In: 2011 IEEE International Conference
on Robotics and Automation, 2011, 4307–4313,
10.1109/ICRA.2011.5980479.

[11] J.-P. Laumond, P. E. Jacobs, M. Taïx and R. M. Mur-
ray, “A Motion Planner for Nonholonomic Mo-
bile Robots”, IEEE Transactions on Robotics
and Automation, vol. 10, no. 5, 1994, 577–593,
10.1109/70.326564.

[12] S. M. LaValle, “Rapidly-exploring random trees:
A new tool for path planning”, Technical Report
98-11, Computer Science Dept., Iowa State Uni-
versity, 1998.

[13] S. M. LaValle and J. J. Kuffner, “Randomized ki-
nodynamic planning”, International Journal of
Robotics Research, vol. 20, no. 5, 2001, 378–400,
10.1177/02783640122067453.

[14] M. Mukadam, X. Yan and B. Boots, “Gaussian
Process Motion Planning”. In: 2016 IEEE In-
ternational Conference on Robotics and Au-
tomation (ICRA), 2016, 9–15, 10.1109/
ICRA.2016.7487091.

[15] V. F. Muñoz and A. Ollero, “Smooth Trajectory
Planning Method for Mobile Robots”. In: Proc. of
the Congress on Comp. Engineering in System Ap-
plications, Lille, France, 1995, 700–705.

[16] M. Pitvoraiko and A. Kelly, “Efficient constrained
path planning via search in state lattices”. In:
Proceedings of 8th International Symposium on
Artificial Intelligence, Robotics and Automation
in Space (iSAIRAS ‘05), 2005.

[17] J. A. Reeds and L. A. Shepp, “Optimal paths for
a car that goes both forwards and backwards”,

Pacific Journal of Mathematics, no. 145, 1990,
367–393.

[18] J. Roth, “Efficient Computation of Bypass Are-
as”. In: Progress in Location-Based Services 2016,
Proc. of the 13th Intern. Symposium on Location-
-Based Services, Vienna, Austria, 2016, 193–210,
10.1007/978-3-319-47289-8_10.

[19] J. Roth, “A Viterbi-like Approach for Trajectory
Planning with Different Maneuvers”. In: Intern.
Conf. on Intelligent Autonomous Systems 15, 2018,
Baden-Baden (Germany), 2018, 10.1007/978-
3-030-01370-7_1.

[20] J. Roth, “Robots in the Classroom – Mobile Robot
Projects in Academic Teaching”. In: Innovations
for Community Services. I4CS 2019., vol. CCIS
14041, 2019, 10.1007/978-3-030-22482-0_4.

[21] J. Roth, “Continuous-Curvature Trajectory Plan-
ning”, Journal of Automation, Mobile Robotics and
Intelligent Systems, vol. 15, no. 1, 2021, 9–23,
10.14313/JAMRIS/1-2021/2.

[22] A. Scheuer and T. Fraichard, “Continuous-
-Curvature Path Planning for Car-Like Ve-
hicles”. In: Proceedings of the 1997 IEEE/RSJ
International Conference on Intelligent Ro-
bot and Systems. Innovative Robotics for Real-
-World Applications. IROS ‘97, 1997, 10.1109/
IROS.1997.655130.

[23] A. Viterbi, “Error bounds for convolutional co-
des and an asymptotically optimum decoding
algorithm”, IEEE Transactions on Information
Theory, vol. 13, no. 2, 1967, 260–269, 10.1109/
TIT.1967.1054010.

[24] Y. You, C. Cai and Y. Wu, “3D Visibility Graph ba-
sed Motion Planning and Control”. In: ICRAI ‘19:
Proceedings of the 2019 5th International Con-
ference on Robotics and Artificial Intelligence,
2019, 10.1145/3373724.3373735.

[25] J. Zhang, Z. Shi, X. Yang and J. Zhao, “Trajectory
planning and tracking control for autonomous
parallel parking of a non-holonomic vehicle”, Me-
asurement and Control, vol. 53, no. 9-10, 2020,
1800–1816, 10.1177/0020294020944961.

[26] Z. Zhang, S. Lu, L. Xie, H. Su, D. Li, Q. Wang and
W. Xu, “A guaranteed collision-free trajecto-
ry planning method for autonomous parking”,
IET Intelligent Transport Systems, vol. 15, no. 2,
2021, 331–343, 10.1049/itr2.12028.

[27] M. Zucker, N. Ratliff, A. Dragan, M. Pivtora-
iko, M. Klingensmith, C. Dellin, J. A. Bagnell
and S. Srinivasa, “CHOMP: Covariant Hamilto-
nian Optimization for Motion Planning”, Inter-
national Journal of Robotics Research, 2013,
10.1177/0278364913488805.

