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Abstract:
In the area of mobile robotics, trajectory planning is the 
task to find a sequence of primitive trajectories that con-
nect two configurations, whereas non-holonomic con-
straints, obstacles and driving costs have to be consid-
ered. In this paper, we present an approach that is able 
to handle situations that require changes of driving di-
rections. In such situations, optimal trajectory sequences 
contain costly turning maneuvers – sometimes not even 
on the direct path between start and target. These situ-
ations are difficult for most optimization approaches 
as the robot partly has to drive paths with higher cost 
values that seem to be disadvantageous. We discuss the 
problem in depth and provide a solution that is based on 
maneuvers, partial backdriving and free-place discovery. 
We applied the approach on top of our Viterbi-based tra-
jectory planner.

Keywords: Mobile Robots, Navigation, Trajectory Plan-
ning, Complex Turning Situations

1. Introduction 
Trajectory planning is a fundamental function of 
a mobile robot. When executing tasks such as trans-
porting items, the robot has to drive trajectories that 
meet certain measures of optimality. Corresponding 
cost functions consider driving time, energy con-
sumption, mechanical wear or buffer distance to ob-
stacles. A planning from the current pose to a target 
pose takes into account an obstacle map and creates 
a sequence of primitive movement commands such 
as driving arcs or straight, whereas the resulting se-
quence of trajectories minimizes the given cost func-
tion. Approaches that solve this problem often have 
two phases: 
• A route planner tries to find a line string in the 

workspace with minimal costs that does not cut 
obstacles, with respect to the robot’s driving 
width,

• A trajectory planner in the configuration space 
takes the route points from the former phase, but 
also considers non-holonomic constraints such as 
minimal curve angles or driving orientations.
For route planning, there exist a variety of efficient 

solutions, most base on A*, where the workspace may 
be modelled by, e.g., grids or visibility graphs. The 
two-phase planning makes the problem manageable 
even for complex or large-scale environments as the 

pure workspace planning only operates on few di-
mensions. The second phase is much harder, because 
non-holonomic constraints make it difficult to use 
straight-forward optimization techniques. Note that 
other approaches, such as probabilistic path planning 
may compute a solution in a single phase. We discuss 
this in the next section.

Even though effective for many situations, some-
times the two-phase approach fails. This is because 
the workspace planning sometimes suggests a route 
that cannot adequately be mapped into the configu-
ration space. In this paper, we consider robots that 
are not able to directly turn in place. If, e.g., a car-like 
robot has to change its driving direction (fore to back-
wards or vice versa), turning maneuvers are required. 
If starts or targets are in a narrow area, we have to 
plan trajectories where the locations of turns are not 
obvious. E.g., think of a charging station that requires 
the robot to drive backwards into a parking bay.

Start

Target

Fig. 1. A Complex Turning Situation

Fig. 1 illustrates such a situation: the robot should 
only slightly move, but should turn by 180°. A pure 
workspace planning that ignores the orientation com-
putes a short direct route. However, if the hallway is too 
narrow, the robot first has to drive a costly route out-
side the narrow area to perform a turning maneuver. 

Typical planning approaches have difficulties 
to find such paths. These situations can be found in 
everyday’s life, e.g., when we want to park a car in 
a narrow parking bay or when we want to reverse the 
driving direction but have to consider constraints giv-
en by the road geometry.

This paper proposes an approach to efficiently 
compute paths with up two turning maneuvers. Note 
that for typical robots, a maximum of two changes 
of driving directions are sufficient. The key idea: we 
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suggest an iterative planning that tries to optimize 
a sequence of maneuvers. As we keep multiple inter-
mediate maneuvers per iteration, required turning 
maneuvers with higher local costs are also consid-
ered. To deal with paths that have to be extended to 
a position away from the direct connection (such as 
in Fig. 1), we suggest an extension of A* to find ap-
propriate free places. We finally model all algorithmic 
components by a multi-strategy planning that pro-
vides a single software interface for planning tasks, 
meanwhile automatically applies the least complex 
approach for a specific scenario.

2. Related Work
Early work investigated shortest paths for vehicles 
that are able to drive straight forward and circular 
curves [3, 5, 17] or integrated additional primitive 
trajectories [2, 22]. Even though a combination of 
such primitive trajectories may appear as turning ma-
neuvers, turning situations are not explicitly consid-
ered. Moreover, only path lengths, but not the costs 
for driving direction changes were examined.

Further work looked at longer paths that go 
through an environment of obstacles. As the variation 
space of possible trajectory sequences gets very large, 
probabilistic approaches were suitable to find at least 
a suboptimal solution [10, 12, 13]. They randomly 
connect configurations by primitive trajectories, cre-
ate a connection graph, then find an actual path. Some 
work also used potential fields [1] or visibility graphs 
[15]. With the help of geometric route planners, the 
overall problem of trajectory planning can be reduced. 
In [11], the route planning step and a local trajectory 
planning step were recursively applied.

[16] introduced the state lattice idea, which is 
a discrete graph embedded into the continuous state 
space. Vertices represent states that reside on a hyper 
dimensional grid, whereas edges join states by trajec-
tories that satisfy the robot’s motion constraints. The 
original approach was based on equivalence classes 
for all trajectories that connect two states and per-
formed inverse trajectory generation to compute the 
result trajectory. [7] introduced a two-step approach, 
with coarse planning of states based on Dynamic Pro-
gramming, and a fine trajectory planning that con-
nected the formerly generated states.

Random sampling can also be used to improve gen-
erated trajectories. E.g., CHOMP [27] used functional 
gradient techniques based on Hamiltonian Monte Carlo 
to iteratively improve the quality of an initial trajectory. 
The approach in [14] represented the continuous-time 
trajectory as a sample from a Gaussian process gen-
erated by a linear time-varying stochastic differential 
equation. Then gradient-based optimization technique 
optimized trajectories with respect to a cost function.

Special planning situations such as driving in the 
parking bay may explicitly be integrated into the plan-
ning component. Approaches such as [25, 26] were 
suitable in the area of autonomous driving, where 
tasks such as parking cars often occur. For this, the 
planning components identify the respective pattern 

and integrate a pre-defined movement. It is difficult 
to extend such an approach to arbitrary situations.

Probabilistic path planning based on RRT [12] 
created numerous random configurations and tried 
to connect them to a tree of valid trajectories. Ad-
vanced variations such as RRT* [9] introduced the 
property of asymptotic optimality – if we spend more 
runtime, the solutions get better and converge to op-
timal paths. This means, probabilistic approaches are 
in principle suitable situations that require changes 
of driving directions. However, they have to face two 
problems: first, the integration of new configurations 
into a tree of configurations only considers local op-
timality. The respective connections try to optimize 
the costs for the small part of the tree that covers the 
closer area of the new configuration. It is not probable 
that costly turning maneuvers or driving to free plac-
es are thus considered in the first place. As a result, 
even though an approach is asymptotically optimal, 
adequate routes are considered very late. The second 
problem: in a small scale, we still have to introduce 
turning maneuvers to connect new configurations. In 
RRT or RRT*, this problem was abstracted away by 
procedures called steer or rewire, however must be 
actually implemented to also work for complex turn-
ing situations.

3. Fundamentals
Our goal is to create a deterministic planning ap-
proach based on a two-phase planning [19].
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Fig. 2. Motion Planning Components

We start with the architecture of the motion plan-
ning and execution (Fig. 2). The Navigation compo-
nent provides a point-to-point route planning in the 
workspace. The Trajectory Planning computes a driv-
able sequence of trajectories between configurations 
and considers non-holonomic constraints. The Eval-
uator computes costs of paths based on the obstacle 
map and the desired cost properties – a certain robot 
application may plug-in its own Evaluator into the 
system. Cost values may take into account the path 
length, expected energy consumption or the amount 
backwards driving. Also, the distance to obstacles 
could be considered, if, e.g., we want the robot to keep 
a safety distance where possible. 
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The lower components are not focus of this paper: 
The Trajectory Regulation permanently tries to hold 
the planned trajectories, even if the position drifts off 
due to slippage. Simultaneous Localization and Map-
ping (SLAM) constantly observes the environment 
and computes the most probable own position and 
location of obstacles by motion feedback and sensors 
(e.g., Lidar or camera). The current error-corrected 
configuration is passed to all planning components. 
Observed and error-corrected obstacle positions are 
stored in the Obstacle Map. The Motion System finally 
is able to execute and supervise driving commands.

3.1. Basic Considerations
We assume the robot drives in the plane in a work-
space W with positions (x, y). The configuration space 
C covers an additional dimension for the orienta-
tion angle, i.e., a certain configuration is defined by 
(x, y, θ). The goal is to find a collision-free sequence of 
trajectories that connects two configurations, mean-
while minimizes the costs.

This problem has many degrees of freedom. Every 
two positions can be connected by an infinite number 
of trajectories and the problem gets worse for larger 
environments with obstacles. We thus introduce the 
following concepts:
• A route planner that solely operates on workspace 

W computes a sequence of collision-free lines 
of sight (with respect to the robot’s width) that 
minimize the costs.

• As the route planning only computes route points 
in W, we have to specify additional variables in C 
(here orientation θ). From the infinite assignments, 
we only consider a small finite set.

• From the possible set of trajectories between 
two route points, we only consider a small set of 
maneuvers. Maneuvers are trajectories, for which 
we know formulas that derive the respective 
geometric parameters.

• Even though these concepts reduce the problem 
space to a finite set of variations, this set is by 
far too large for complete checks. We thus apply 
a Viterbi-like approach that significantly reduces 
the number of checked variations.
We carefully separated the cost function from all 

planning components. We assume, we are able to as-
sign costs to any route or trajectory sequence accord-
ing to two rules: First, we must be able to define a to-
tal order on costs. This is required, as we iteratively 
compare routes or trajectory sequences and identify 
the ‘best’ one from a set of candidates. Second, a colli-
sion with obstacles has to result in infinite costs.

3.2. Primitive Trajectories and Maneuvers
The basic movement capabilities of a robot are de-
fined by a set of primitive trajectories. The respective 
set can vary between different robots. E.g., the Carbot 
[20] is able to execute the following primitive trajec-
tories:
• L(): linear (straight) driving over a distance of  

(that may be negative for backward);
• A(, r): drive a circular arc with radius r (sign 

distinguishes left/right) over a distance of  (that 

may be negative for backward);
• C(, κs, κt): clothoid over a distance of  with given 

start and target curvatures.
We are able to map primitive trajectories directly 

to driving commands that are natively executed by the 
robot’s motion subsystem. 

Implicitly, primitive trajectories specify functions 
that map configurations cs to ct. Due to non-holonomic 
constraints, for given cs, ct∈C there is usually no prim-
itive trajectory that maps cs to ct. At this point, we in-
troduce maneuvers. Maneuvers are small sequences 
of primitive trajectories (usually 2 to 5 elements) that 
are able to map given cs, ct∈C. More specifically:
• A maneuver is defined by a sequence of primitive 

trajectories (e.g., denoted ALA or AA) and further 
constraints. Constraints may relate or restrict 
geometric parameters.

• For given cs, ct∈C there exist formulas that specify 
the geometric parameters of the involved primitive 
trajectories, e.g.,  for L, A and C, r for A, κs, κt for C.

• Sometimes, the respective equations are 
underdetermined. As a result, multiple maneuvers 
of a certain type (sometimes an infinite number) 
map cs to ct. Thus, we need further parameters, we 
call free parameters to get a unique maneuver.
Until now, we identified about thirty maneuvers 

of which Fig. 3 shows six. We assigned names that 
illustrate the maneuvers’ shape, e.g., the J-Arc drives 
a path that looks like the letter ‘J’. The Dubins-Arcs 
correspond to the combination of three arcs of Dubins 
original approach [3]. 

J-Arc
(LA)

J-Arc2
(AL)

S-Arcs (AA)

∫-Arcs (ALA)

Wing-Arc
(LAL)

Dubins-Arcs (AAA)

Ta
rg

et

Target

Target

Fig. 3. Example Maneuvers

Let Π denote the set of maneuver types relevant for 
a certain scenario or application. Note that Π can eas-
ily be extended or reduced to reflect to robot’s driv-
ing capabilities. E.g., a certain robot may not support 
clothoids. In this case, we could remove all maneuvers 
that contain a C primitive from Π.

3.3. Finding an Optimal Variation
Let p1=(x1, y1)…pn=(xn, yn) denote a route found by 
the route planning component for a start (p1, θ1) and 
target (pn, θn). Our problem is to find a sequence of 
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maneuvers that connects start, target and all route 
points p2,... pn-1 in-between. 

Of the infinite number of intermediate orienta-
tions and maneuver parameters we define a finite 
set of promising candidates. This obviously leads to 
sub-optimal results. In reality, however, it does not 
significantly affect the overall costs. Let Oi denote all 
orientation candidates for a route point i≥2. We sug-
gest variations of angles from the previous and to the 
next route point (Fig. 4).
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Fig. 4. Generation of Orientation Candidates

For free parameters we distinguish the small set 
of variations for arc senses (e.g., two for J-Bow) and 
the infinite set for arc radii (e.g., for Wing-Arc). For 
the first type we are able to iterate through all vari-
ations. For the second type, we select a small set of 
candidates, similar to orientation angles. We suggest 
{rmin, 3⋅rmin, 5⋅rmin}, where rmin is the minimal curve ra-
dius. Let params(M) denote the set of parameters for 
a maneuver type M∈Π. For maneuver types with no 
free parameters, we define params(M)={∅}, whereas 
∅ is an empty parameter setting.

Even though we now have a finite set of variations 
Π × Oi × params(M) for a single route step, the total 
number still is too large for a complete check. To give 
an impression: for 5 route points we get a total num-
ber of 20 million, for 20 route points 2⋅1037, for an 
average of 20 maneuvers and 5 intermediate angles. 
Obviously, we need an approach that computes a re-
sult without iterating through all permutations.

Our approach [19, 21] is inspired by the Viterbi 
algorithm [23] that tries to find the most likely path 
through hidden states. Our adaption looks for a se-
quence of maneuvers/orientations/free parameters 
that connects them with minimal costs. 

A Viterbi-like approach is suitable, because opti-
mal paths have a characteristic: the interference be-
tween two primitive trajectories in that path depends 
on their distance. If they are close, a change of one 
usually also causes a change of the other. This is be-
cause a certain maneuver influences its end-orienta-
tion and thus the start-orientation of the next maneu-
ver. If they are far, we may change one trajectory of the 
sequence, without affecting the other. Viterbi reflects 
this characteristic, as it checks all combinations of 
neighbouring maneuvers to get the optimum.

Fig. 5 illustrates the idea. Starting with (p1, θ1) it 
iteratively finds optimal maneuvers to (pi, θij). For the 
multiple intermediate angles Oi={θi1, θi2, …}, we keep 
optimal trajectory sequences to each of these angles 
in a list S. Because the number of trajectories in S only 
depends on the last route point (and in particular not 
on the route before), the runtime and memory usage 
is of O(n).

For a new route step pi+1, we again have to check 
multiple orientation angles of Oi+1. For this, we try to 
extend all trajectory sequences in S by maneuvers. I.e., 
we compute all possible maneuver types in Π with 
possible parameters to get to (pi+1, θi+1,j). We store the 
optimal trajectory sequences to each of the orienta-
tion angles in a new list S’ that forms the S for the next 
iteration.

In the last step we have On={θn}, i.e., we only have 
to check the single target angle. Thus, if there is at 
least one trajectory sequence found, we get |S|=1 and 
the optimal sequence is the single element of S.

4. The New Approach
We want to extend the current two-phase approach 
to also support situations that require changes of 
driving directions. The maneuver-based trajec-
tory planning is a solid foundation to integrate new 
mechanisms for required paths. Our approach can be 
summarized as follows: 
• We integrate new turning maneuvers, required to 

change the driving direction.
• We extend the Viterbi-based optimization to find 

one or two backdriving sequences, if required.

pi
θi1

θi2

θi3

pi+1

θi+1,1

θi+1,2

θi+1,3

pi

pi

pi-1

pi-1

pi-1

pi+1

pi+1

Check all Π x Oi x params to find 
the maneuver with minimal 
costs to (pi+1, θi+1,1)

… to (pi+1, θi+1,2)

… to (pi+1, θi+1,3)

S

S'

Fig. 5. Idea of Viterbi-Optimization

• We integrate a mechanism to find free places for 
turning maneuvers, when start and target are only 
connected by narrow paths.

• The new mechanisms are integrated by a software 
structure that supports multi-strategy planning.
Note that, whenever backdriving is required, a max-

imum of two backdriving sequences is sufficient for op-
timal paths. We come back to this point in section 4.2.

4.1. Special Turning Maneuvers
The trajectory planner prefers forward driving as long 
as possible, if the cost function indicates this. Sensors 
that map the environment or prevent collisions often 
point in driving direction. Thus, it is reasonable to re-
ward forward driving. A change of driving direction 
requires stopping the motors that interrupts a smooth 
driving. A typical cost function penalizes a switch of 
forward to backwards driving and vice versa.
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However, the change of driving directions is not 
always avoidable. As a first goal, we have to introduce 
new maneuvers that change between driving forward 
and backwards and vice versa. In daily life we are fa-
miliar with parking or turning maneuvers in the con-
text of car driving that have a similar objective. For 
our planning approach, we identified three turning 
maneuvers (Fig. 6):
• One-Bow-Turn (LAL): an arc (usually with a larger 

turning angle) is embedded into two linear 
trajectories. The change of driving direction is at 
start or end of the arc.

• Two-Bow-Turn (AAL): two arcs with turning angle 
nearly 90° are connected by a change of driving 
direction. The linear trajectory is required to reach 
any target position.

One-Bow-Turn

Start

Two-Bow-Turn

Parking

Linear Arc
fore back

fore
back

Start

Start

Start

Start

Target

Start
Start

Fig. 6. New Turning Maneuvers

• Parking (LAA): After a linear trajectory we have 
a change of drive direction. Two arcs (left/right 
or right/left) are then driven to reach the target 
position.
All these maneuvers have the single arc radius or 

the two arc radii as free parameters. For Two-Bow-
Turn and Parking we require the same radius for both 
arcs to get a unique maneuver. Fig. 7 illustrates the 
constructions. We require the following geometric 
computations:
• (A) Shift the straight line through the robot’s pose 

by r to left or right.
• (B) Creation of a circle (left or right) with radius r 

that touches the robot’s position and has the 
robot’s orientation as tangent.

• (C) Intersection of two straight lines.
• (D) Intersection of straight line and circle.

For the Bow-Turn we apply projections (A) to start 
and target pose. The intersection of these (C) creates 
the arc centre. Note that of the four variations (start 
or target, left or right) of the (A) projections, two do 

not change the driving direction. Of the remaining 
two, we chose the one with least costs.

For the Two-Bow-Turn we create the start arc using 
(B). We then intersect (D) a circle with radius 2r and 
the arc centre with the target straight line projection 
(A). The intersection is the second arc’s centre. For 
Parking we apply the reverse construction: the start 
straight line projection (A) is intersected (D) with the 
target circle (B).

Start

Two-Bow-
Turn

Parking
Start

One-Bow-Turn

r

(A) (B) (C) (D)

Fig. 7. Construction of Turning Maneuvers

For Two-Bow-Turn and Parking we have four varia-
tions: left/right of straight line projection and left/ right 
of the created start or target circle. Of these, two do not 
change the driving direction in the required manner. Of 
the remaining two, we chose the one with least costs.

Of course, all constructions (A) to (D) have to be 
mapped to formulas; fortunately, all have closed solu-
tions (linear or quadratic).

4.2. Planning Backdriving
The next question is how to integrate the turning ma-
neuvers into paths. In the following, we assume that 
forward driving is preferred over driving backwards. 
We further assume, if a robot is able to drive forward 
though an environment, it may also be able to drive 
backwards on the same trajectory. This means, the 
robot’s geometry (e.g., concerning clearance width) 
is not different for the two driving directions. This is 
true for most robots.

Fig. 8a) shows, how turning maneuvers can be in-
tegrated into a trajectory sequence for different cases 
of start and target directions.
• The trajectory sequence can entirely be driven 

forward.
• The trajectory sequence can entirely be driven 

backwards – this may be a result of short route or 
no place for a turning maneuver.

• The trajectory sequence contains a single turning 
maneuver. This happens, if start and target can 
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only be accessed by a certain driving direction, 
and this is different for start and target. 

2 Turnings

1 Turning0 Turnings
Start Target Start Target

a) Cases for turning maneuvers

b) Replacement of multiple turning maneuvers

Fig. 8. Different Classes for Turning Maneuvers

• The trajectory sequence contains two turning 
maneuvers. This happens, if the start can only be 
left and target can only be reached by backwards 
driving. Moreover, there may be place for two 
turning maneuvers and the costs of forward 
driving pays off.
On the first glance, there may be more than two 

turning maneuvers. However, as a consequence of our 
assumptions, we get a maximum two: if we had three or 
more, we can always remove a sequence with an even 
number that start with driving backwards (Fig. 8b).

The most complex situation is presented in Fig. 9. 
Here, we want to switch to forward driving as soon as 
possible, i.e., as far as there is a place for the turning 
maneuver. In addition, we want to switch to backdriv-
ing as late as possible.

Our approach of Viterbi-optimization is able to 
create the respective trajectory sequence, if we add 
one modification: in addition to the orientation candi-
dates (Fig. 4) we consider the reverse angles (i.e., the 
angles plus 180°). This modification creates sufficient 
candidates to integrate one or two turning maneu-
vers, if required. 

We have to justify, why this modification in rela-
tion with the Viterbi approach creates the turning 
maneuvers at optimal places. Remember that the 
Viterbi approach iteratively goes through the work-
space positions, meanwhile keeps optimal trajectory 
sequences to all configurations at the last considered 
position. I.e., at each last point, we know how to reach 
it in forward and backwards orientation (and further 
graded angles in-between). We have to consider two 
effects: 1) the switch to forward driving (if it is re-
quired in the sequence) is as early as possible, and 2) 

the switch to backwards driving (if it is required in 
the sequence) is as late as possible.

Route Line String

Final Trajectory Sequence

Configuration Space Alternatives

Viterbi Optimiziation ...Viterbi Optimiziation...

...Viterbi Optimiziation

Both 
directions 
possible

Fore-driving 
has least costs 

to get to

At this point 
again both 
directions 
possible

Only backdriving 
possible from       to 

target

TargetStart TargetStart

TargetStart

TargetStartTargetStart

TargetStart

Fig. 9. Planning of Backdriving with Viterbi-Optimization

Target

Start

Target

Start

Fig. 10. Failure Situation (left) and Desired Trajectory 
Sequence (right)

1) This effect occurs, if the environment prohibits 
forward driving when leaving the starting area. 
This means, forward driving configurations are 
considered in one step, but no single maneuver 
is able to reach it, as long as the robot is in the 
narrow area. But as soon as possible, the respective 
turning maneuver is taken into account. In the 
following iterations, both driving directions are 
expanded simultaneously, however at a certain 
point, forward driving causes least costs. 

2) Shortly before entering a narrow target area, multiple 
orientations are considered, but even backdriving 
orientations may be reached with least costs, if all 
orientations before were forward orientations. When 
entering a narrow area, both driving directions still 
are considered simultaneously. However, if the final 
target can only be an extension of the backdriving 
variation, the last possible position for changing the 
direction is planned.
As we can see here, we still are able to create the 

trajectory sequence step by step in a greedy manner 
without loosing optimality. As a last point, we have to 
discuss a more technical problem. Usually, the naviga-
tion tries to produce as few as possible route points, 
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as the number influences the computation speed 
of the second planning phase. This may cause large 
distances between route points, if, e.g., the robot is 
able to drive straight in a hallway. The problem: the 
change of forward and backwards driving can only be 
planned at a route point computed by the navigation 
component. Thus, on large route sections, the planner 
often does not have a chance to identify an appropri-
ate position. To solve this, we have to artificially inte-
grate route points, if a distance exceeds a certain lim-
it. For this, we can simply cut a large section linearly.

4.3. Free-Place Turnings
The approach until now is able to plan trajectory 
sequences with partial backwards driving on direct 
routes. However, there exist scenarios where the 
workspace route cannot be extended to the configu-
ration space (Fig. 10). 

This problem occurs, when a turning maneuver is 
required, but no route point offers enough space for 
its integration. This may require arbitrary long de-
tours far away from the direct route: imagine a maze 
where the robot first has to drive outside to find an 
appropriate place for a turning maneuver.

An observation: the maximum of turning maneu-
vers outside the workspace route is one. This is be-
cause the situation only occurs, when both start and 
target are inside the same narrow area and a single 
turn outside this area is sufficient. Thus, we can formu-
late a solution as follows: find a turning position that
• offers sufficient space for a turning maneuver and
• generates minimal route costs for the sum of start 

to turning position and turning position to target.
Here, we do not want to iterate through all places, 
meanwhile calling the route planning two times. Our 
approach is based on the idea presented in [18] and 
extends the A* route planning approach [8].

A* Point to Point Planning. To understand our 
approach, we first have to briefly describe the tradi-
tional route planning based on A*. First, we have to 
map the environment on a graph with nodes qi. This 
requires a kind of discretization. There exist several 
methods to do this, e.g., using a grid [4], Voronoi re-
gions [6] or visibility graphs [24].

In a second step we have to assign cost values to 
edges between connected nodes, denoted c(qi, qj). 
We furthermore have to provide a lower cost limit 
estimation between two nodes, denoted h(qi, qj). Let 
further c*(qi, qj) denote the costs of the optimal route. 
Our goal is now to compute c*(start, target) and the 
respective sequence of nodes.

The actual route computation by A* iteratively 
assigns three ‘states’ to the node: not_visited means, 
there is no knowledge how to reach it from the start; 
open means, we know at least one route from the 
start; closed means: we are sure how the reach a node 
from the start by an optimal route. Obviously, we ter-
minate, when the target has been closed. To control 
the state changes, we need an array g[qi] that is
• ∞, if qi is not_visited,
• c*(start, qi), if qi is closed,
• not less than c*(start, qi), if qi is open.

Let further denote f[qi]=g[qi]+h(qi, target). A* is 
based on a key observation: for the qi with the lowest 
f[qi], we get g[qi]=c*(start, qi). As a result, we can as-
sign the closed state to this node. In addition, we iter-
ate through all neighbours qj of qi and check, if qj can 
be reached with least costs going over qi. We further 
assign the open state to all non-closed neighbours of 
qi. Finally, every node gets a backlink entry that points 
to the neighbour over which a node is accessed on an 
optimal route from the start.

To quickly find the qi with lowest f[qi], we need 
an efficient structure, e.g., the priority queue, that is 
based on types of ordering the open nodes.

Routes Through Free Places. We now want to 
route over a free place, sufficiently large to enable 
a turning maneuver. More formally, we search a free 
place node I that minimizes

 c*(start, I)+c*(I, target) (1)

As an additional property, the resulting costs must be 
below a certain cost limit, relative to the direct path. 
This is useful as we may consider any path that re-
quires too much driving costs as failure and report 
this to the application. The developer thus defines 
a factor v and we only consider I with

 c*(start, I)+c*(I, target) ≤ v⋅opt (2)

where opt=c*(start, target) denotes the optimal route 
costs. This means, the set Φ of all nodes that are can-
didates as free place is

 Φ(start, target, v) = 
 {I | c*(start, I)+c*(I, target) ≤ v⋅opt} (3) 

The remaining section describes, how we efficiently 
compute Φ and thus implicitly the routes from start to 
I and from I to target. A first observation: from

 c*(start, I)+c*(I, target) ≤ v⋅opt (4) 

and

 f[qi]=g[qi]+h(qi, target)=c*(start, qi)+h(qi, target)  
 ≤c*(start, qi)+c*(qi, target) (5) 

which is true, because h(qi, target)≤c*(qi, target), fol-
lows 

 f[qi]≤v⋅opt (6)

As the f-value of the next node in the open list cannot 
get smaller, we can stop, when we poll a node with an 
f-value larger than v⋅opt. Because we do not know opt 
from the beginning, we first expand nodes (accord-
ing to A* [8]) until we polled the target node. Then, 
we visit more nodes, as far as we get the first node 
with f>v⋅opt. As a consequence, the field goes beyond 
the target. This is reasonable, as those nodes are also 
candidates for I. Algorithm 1 sums up these consider-
ations and shows, how to compute the start field. To 
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clearly distinguish the respective structures, we apply 
an index s to all start field arrays.

In a second round, we have to generate a target 
field with index t (Algorithm 2). The approach is simi-
lar to Algorithm 1, but in order to apply the appropri-
ate ordering of route nodes, we have to incorporate 
these changes:
• The first open node is the target.
• Whenever we expand a node qi, we check the 

distance from the neighbour qj, i.e., c(qj, qi,), not to 
the neighbour.

• The estimation h is computed from start to the 
respective node.

• The sequence of backlink entries points to the 
target not to the start.
In addition, we can directly use the opt value of the 

start field. Moreover, the target field generation can 
benefit from a much better estimation h compared to 
the start field (see (*) in Algorithm 2): we set h=gs[qj] 
whenever gs[qj]≥0. This does not change the result, 
but significantly reduces the number of visited nodes 
for the target field, thus significantly improves the 
runtime. Using the gs for h does not only provide an 
estimation, but returns the real costs, thus is the best 
considerable estimation.

The start and target field generation produce 
gs[qi] =c*(start, qi) for all qi with states[qi]=closed and 
gt[qi]= c*(qi, target) for all qi with statet[qi]=closed. As 
a consequence, we are now able to provide an effi-
cient formula for Φ:

 Φ(start, target, v) = {qi | states[qi]=statet[qi]=closed 
 and gs[qi]+gt[qi] ≤ v⋅opt} (7)

This approach is by far more efficient than an ap-
proach that iteratively computes two optimal routes 
for every node I in the graph. 

In order to find an appropriate turning place, 
we need to evaluate the property of ‘free space’ for 
a node. As the trajectory planning is an additional 
step, we do not know the actual required space to 
drive a turning maneuver. However, we can find an 
appropriate simplification that can be evaluated in 
workspace. E.g., we can estimate the clearance space 
required by a turning maneuver through a node us-
ing simulations. We furthermore are able to decide, 
whether a node has sufficient distance to the closest 
obstacle. This is required anyway to create an initial 
graph, as a node represents a single point in work-
space, but the robot has a certain geometric extent. To 
sum up, we are able to efficiently decide, if a certain 
node has sufficient distance for a turning maneuver. 
Let free(qj) denote this property.

We now can put all together. We compute

 Iopt = arg min (gs[I]+gt[I]) 
 I∈ Φ,free(I) (8)

For this, we first compute Φ with formula (7) sort-
ed by gs[qi]+gt[qi]. We then iterate though Φ starting 
with the smallest value. For each we test free(qj) until 
we get a hit.

4.4. Multi-Strategy Planning
Until now, we considered different approaches to get 
from start to target, namely
• workspace route planning: with or without routing 

over free places, assigning different values for v.
• trajectory planning: with or without reverse angle 

candidates, different sets of maneuvers, with or 
without turning maneuvers.

This produces a large set of possible settings to com-
pute a trajectory sequence. Because more complex 
approaches such as finding a free place request more 

• trajectory planning: with or without reverse 
angle candidates, different sets of maneuvers, 
with or without turning maneuvers. 

 
This produces a large set of possible settings to com-
pute a trajectory sequence. Because more complex ap-
proaches such as finding a free place request more run-
time, we do not want to start with such an approach. In 
real scenarios, most of the planning tasks are still of a 
simple type. Thus, we should not spend too much 
planning time for these. 

We want to support developers of corresponding 
applications to express planning tasks. A developer 
could define a list of rules, e.g.: 

• If a planning without free places and without 
reverse angle candidates is successful, take 
the respective result. 

• If not, consider reverse angle candidates. 
• If this still is not successful, additionally inte-

grate turning maneuvers. 
• If this still is not successful, try the route plan-

ning through a free place in combination with 
reverse angle candidates and turning maneu-
vers. 

 
We get even more variations, if we deal with different 
route planning approaches (e.g., grid, Voronoi regions 
or visibility graphs), different safety distances to ob-
stacles, or different candidates for desired curve radii. 
To gain control over the multitude of possibilities, we 
suggest a software architecture that allows the devel-
oper to express rules to combine them. Our approach 
is based on two key ideas: 

• First, we consider a pair of workspace route 
planning and trajectory planning as a single 
planner component. This takes start and tar-
get configurations (Fig. 11 left). 

• Second, we hierarchically build new planning 
components that internally contain own plan-
ners, but their interface still appears as a sin-
gle planner (Fig. 11 right). 

 
Encapsulating the two planning phases by a single 
component allows us even to integrate alternative ap-
proaches for single-step planning such as probabilistic 
trajectory planning [9, 12]. 

The hierarchical components are not restricted to 
two levels – there can be any deep nesting. A Selector 
controls, which inner planning components may be 
executed and how multiple inner results are combined 

 
Algorithm 1. Start field generation 
start_field(start, target, v) 
gs[start]0; fs[start]0; states[start]open;  
openList.add(start);   // add start to open 
for all qistart {  // initialize fields 
     gs[qi] -1;  fs[qi]0;  states[qi]not_visited;  
}  
optundefined; // costs for optimal route first unknown  
do { 
     qiopenList.poll(); // get open qi with minimal fs[qi] 
     if opt is defined and fs[qi]>vopt  // this cannot be an I 
          return success; // going over I is too costly: finish 
     if qi=target optgs[qi];  // route to target found: set opt 
     states[qi]closed; 
     for all neighbours qj of qi { // expand node according A* 
          if states[qj]closed {  
               gnewgs[qi]+c(qi, qj);  
               fnewgnew+h;  
               if states[qj]=not_visited or fnew<fs[qj] { 
                   gs[qj]gnew;   fs[qj]fnew; // start→qi→qj is less costly 
                   backlinks[qj]qi;     // than the formerly stored route  
                   states[qj]open; 
                   openList.add(qj);       // if already added, update f 
               } 
          }  
     } 
} while not openList.isEmpty(); 
return failure;   // no route at all from start to target 
 

 
Algorithm 2. Target field generation 
target_field(start, target, v) 
gt[target]0; ft[target]0; statet[target]open;    
openList.add(target);   // add target to open 
for all qitarget {  // initialize fields 
     gt[qi] -1;  ft[qi]0;  statet[qi]not_visited;  
} 
do { // Note: opt is known from start field 
     qiopenList.poll(); // get open qi with minimal ft[qi] 
     if ft[qi]> vopt  // this cannot be an I 
          return success; // going over I is too costly: finish 
     statet[qi]closed; 
     for all neighbours qj of qi {  // Note: driving direction is qj→qi ! 
          if statet[qj]closed { // expand node 
               gnewgt[qi]+c(qj, qi); // Note: costs from qj→qi ! 
               if gs[qj]0 // (*) estimation start to qj available 
                    hgs[qj]; // i.e., the real costs, from start field, gs 
               else 
                    hh(start, qj); // not available: compute h yourself 
               fnewgnew+h;  // Note: h estimates start→qj ! 
               if statet[qj]=not_visited or fnew<ft[qj] { 
                   gt[qj]gnew;   ft[qj]fnew;// qj→qi→…→target is less costly 
                   backlinkt[qj]qi; // than the formerly stored route 
                   statet[qj]open; 
                   openList.add(qj);       // if already added, update f 
               } 
          } 
     } 
} while not openList.isEmpty(); 
return failure;   // no route at all from start to target 
 

 
 

Fig. 11. Software Structure for Planning 
 

Planning 
interface

Start Pose
Target Pose

Trajectory
Sequence

Route Points

only
Positions

Workspace
Navigation

Trajectory 
Planning

Evaluator
(considers obstacles)

evaluate evaluate

Planning 
interface

Start Pose
Target Pose

Trajectory
Sequence

Planning 2

Selector

Planning 1 ...

Evaluator
(considers obstacles)



26

Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME  15,      N°  4      2021

Articles26

runtime, we do not want to start with such an ap-
proach. In real scenarios, most of the planning tasks 
are still of a simple type. Thus, we should not spend 
too much planning time for these.

We want to support developers of corresponding 
applications to express planning tasks. A developer 
could define a list of rules, e.g.:
• If a planning without free places and without 

reverse angle candidates is successful, take the 
respective result.

• If not, consider reverse angle candidates.
• If this still is not successful, additionally integrate 

turning maneuvers.
• If this still is not successful, try the route planning 

through a free place in combination with reverse 
angle candidates and turning maneuvers.

We get even more variations, if we deal with different 
route planning approaches (e.g., grid, Voronoi regions 
or visibility graphs), different safety distances to ob-
stacles, or different candidates for desired curve radii. 
To gain control over the multitude of possibilities, we 
suggest a software architecture that allows the devel-
oper to express rules to combine them. Our approach 
is based on two key ideas:
• First, we consider a pair of workspace route 

planning and trajectory planning as a single 
planner component. This takes start and target 
configurations (Fig. 11 left).

• Second, we hierarchically build new planning 
components that internally contain own planners, 
but their interface still appears as a single planner 
(Fig. 11 right).

Encapsulating the two planning phases by a single 
component allows us even to integrate alternative ap-
proaches for single-step planning such as probabilis-
tic trajectory planning [9, 12].
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Fig. 11. Software Structure for Planning

The hierarchical components are not restricted to 
two levels – there can be any deep nesting. A Selec-
tor controls, which inner planning components may 
be executed and how multiple inner results are com-
bined to a single result. Until now, we developed two 
hierarchical components: 
• Best-costs: all inner components execute the 

planning tasks and the inner result with best costs 
is returned as the component’s total result.

• First-success: the inner planning components are 
executed one after the other in a given order and 
the first successful planning is returned as the 
component’s total result.

Fig. 12. The Carbot

A developer may make a choice based on available 
computational resources and runtime restrictions. 
The best-costs component requires to run all inner 
planning components, but this can be parallelized, 
if the runtime system supports it. The first-success 
component safes computational power, if there is 
a high probability for successful inner planning com-
ponents that are checked first. However, the final re-
sult may be sub-optimal.

5. Experiments
We implemented the approach on our Carbot robot 
(Fig. 12). It has a size of 35 cm × 40 cm × 27 cm and 
a weight of 4.9 kg. It is able to run with a speed of 
31 cm/s. The wheel configuration allows to indepen-
dently steer two wheels. For arcs, the different num-
bers of revolutions of the powered front wheels as 
well as the steering angles of the steered rear wheels 
are adapted to follow the respective curve geometry.

A rotating Lidar device (Slamtec RPLidar A2M4) 
on top is used for world modelling. It scans the 360° 
degrees in 0.9° steps, i.e., produces 400 distance 
points per rotation. The sample frequency is 4000 
measurements per seconds, i.e., 100 ms for every 
scan of 360°. The range is 0.15 to 6.00 m with a reso-
lution of smaller than 0.5 mm. 

We run the experiments in our simulation envi-
ronment that simulates the robot on hardware-level 
[20]. It is very close to the real robot. E.g., the same 
binary code runs on the real robot and simulator. Mo-
tors and sensors are simulated on low levels. E.g., the 
simulated and real motors have the same I2C com-
mand interface. Typical sensor errors and physical 
effects such as slippage can be applied. 

We used the simulator to create situations where 
complex turning situations occur. Without the simu-
lator it would be very difficult to create environments 
that systematically challenge the mechanisms pre-
sented above.

Fig. 13 shows characteristic environments. Situ-
ation a) is the most simple: as the required turning 
maneuver can be applied at the penultimate route 
section, the Viterbi approach checks a change of driv-
ing direction without any further mechanisms.
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Situations b) and c) are more complex: a Viter-
bi-optimization that only considers forward driving 
would fail, as we need to drive backwards for a longer 
time to get into the parking position. Thus, we addi-
tionally require the reverse angle candidates. Note 
that for the entire driving in the narrow hallway, for-
ward as well as backwards driving is considered as 
suitable direction. Only at the end, the forward driv-
ing candidate (and thus the corresponding trajectory 
sequence in the hallway) is removed and solely the 
presented sequences in the figure remain.

In situation d) it pays off to integrate two changes 
of directions. This is because, we have two places that 
support the turning maneuvers and their distance is 
large enough. Note that sequences with two turning 
maneuvers are only planned, if the cost function pe-
nalizes backwards driving, otherwise entirely driving 
backwards would be a more suitable solution.

Situations e) and f) require free-place turnings. In 
e), as a first try, the direct (workspace) connection is 
preferred over the large route around the mid square. 
However, any trajectory planning based on the direct 
connection failed, as not any turning maneuver can be 

integrated. Our multi-strategy planning then tries the 
free-place planning. The nearest free place is the area 
on the left. The corresponding two routes, one from 
start to free place and one from free place to target 
now can easily be planned. Situation f) is the same as 
situation c) apart from the start position. In f) the ro-
bot first has to fully drive outside the long hallway to 
integrate the turning maneuver. This situation should 
illustrate that in worst case, a free turning place can 
be far away from start and target.

In these situations, the robot already knows all 
involved obstacles. Either the robot has investigated 
the map before or an obstacle map was given. In many 
scenarios, however, the robot has to find a path even 
though the map is unknown or only partly known. In 
such scenarios, we have two options: either the robot 
first has to explore the environment or the robot ap-
plies an iterative routing approach. The next exper-
iment illustrates the latter case. The robot should 
leave a maze that is unknown at the beginning. Dur-
ing driving, the Lidar scanner discovers new obstacles 
that are included into the robot’s map.

b)a)

d)

c)

e)

Target

Target

Start

Obstacle
Workspace Route

L Linear Trajectory

A
Arc Trajectory

A~ Arc Trajectory with 
opposite turning 
direction

Robot Change of Driving 
Direction

Target

Start

Target

Start

Target

Start

Start

Start Target

f)

Fig. 13. Complex situations
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The iterative routing approach works as follows: 
a trajectory sequence is planned on the partly known 
map, whereas undiscovered areas are for the moment 
considered as obstacle-free. As a result, large parts of 
the route go straight through currently undiscovered 
obstacles.

While driving, the robot permanently checks, if the 
formerly planned trajectories now go though newly 
discovered obstacles. Corresponding collisions re-
quire a new planning. To reduce the number of plan-
ning calls, we wait, until the distance between robot 
and collision are below a given threshold.

Fig. 14 shows some snapshots when the robot 
searches a way out of a narrow maze. We can easily 
see straight trajectories going through unknown are-
as. We also see the integration of turning maneuvers. 
This, e.g., occurs, when the robot drives into a dead 
end, drives backwards when leaving the dead-end 
and wants to continue driving forward.

Note that a route with two turning maneuvers and 
a route through a free place only rarely occur in the 
situation of iterative routing. This is because the map 
in the area of the target is unknown and thus all for-
ward trajectories first can be planned without collid-
ing with obstacles. 

Fig. 14. Leaving a Maze 

6. Conclusion
Complex turning situations that require changes 
of driving directions are crucial. They may lead to 
lengthy paths, long planning time, or even worse, 
a complete failure of the planning component. We 
suggested a solution built upon our maneuver-based 
planning with Viterbi-optimization.

We integrate new turning maneuvers, extend the 
optimization approach to create up to two backdriv-
ing sequences and are able to find free places for 
turning maneuvers. A software structure supports 
multi-strategy planning. With this, the planning com-
ponent is able to react to the degree of complexity: 
for simple situations (still the majority), a simple and 
quick planning strategy still is sufficient. Only if this 
fails, more complex strategies are activated. The ap-
plication developer can pre-define the adaptive ac-
tivation of strategies in a fine-granular manner. We 
successfully implemented the approach on our Carbot 
platform.
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