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Abstract:
The paper presents a general procedure to solve nume‐
rically optimal control problems with state constraints. It
is used in the case, when the simple time discretization
of the state equations and expressing the optimal cont‐
rol problem as a nonlinear mathematical programming
problem is too coarse. It is based on using in turn two
multiple shooting BVP approaches: direct and indirect.
The paper is supplementary to the earlier author’s paper
on direct and indirect shooting methods, presenting the
theory underlying both approaches. The same example
is considered here and brought to an end, that is two full
listings of two MATLAB codes are shown.
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1. Introduction

Wewant to determine a piecewise continuous con‑
trol function u(t) ∈ R, t0 ≤ t ≤ tf , which minimizes
the Mayer functional

J(u) = g(x(tf )) (1)

subject to the constraints

ẋ(t) = f(x(t), u(t), t), t0 ≤ t ≤ tf (2)

x(t0) = x0 (3)

S(x(t), t) ≤ 0, t0 ≤ t ≤ tf (4)
Here, x(t) ∈ Rn denotes a vector of state varia‑
bles, constraint (3) describes initial conditions, (4) is
a nonstationary inequality constraint on current va‑
lues of state. It is assumed, that the function S is
suf�iciently continuously differentiable. The function
f(x(t), u(t), t) is allowed to be merely piecewise con‑
tinuously differentiable with respect to time variable
for t ∈ [t0, tf ]. The �inal time tf is �ixed. Problemswith
free �inal time or problems with integral terms in the
performance index (Bolza or Lagrange) can be easily
transformed into a problem of the type (1)‑(4) by me‑
ans of additional state variables.

For the sake of simplicity of the presentation we
do not consider constraints on control. However, the
methodology presented both in [4] and here is general
and may be used to solve also such problems.

The simplest method to solve the problem (1)‑(4)
consists in time discretization of the state equation (2)
with equal length time stages. Then state and control
trajectories are represented by vectors of real num‑
bers (i.e., they are piecewise constant) and from the
differential state equations difference equations are
obtained. The latter are treated as a set of equality
constraints in a static nonlinear programming pro‑
blem with the performance index (1) and an additi‑
onal set of inequality constraints stemming from the
constraint on the current state (4). In this way the op‑
timal control problem has been converted to a non‑
linear mathematical programming problem. Unfortu‑
nately, there is a big class of problems, e.g. [8], in the
aerospace, medical apparatus domain, chemical and
nuclear reactors, robot manipulators, in which a high
accuracyof the solution is crucial and the above appro‑
ach is unacceptable as it delivers controls which are
too coarse.

In such cases we apply direct and indirect shoot‑
ing methods [8], [7]. Typically, the initial guesses of
the optimal state and control trajectories are genera‑
ted by applying the direct method [2]. On the basis
of them the possible intervals of the activity of con‑
straints are determined. Then the necessary conditi‑
ons of optimality are analytically derived, what leads
to a boundary value problem (BVP) [9] for ordinary
differential equations with state and adjoint variables
[10].

In the previous paper [4] the basic theory of the
shooting approaches was presented. As an illustration
an example taken from Jacobson and Lele’s paper [3]
was used. However, there was no space there to pre‑
sent the codes giving the presented results. In this pa‑
per MATLAB procedures which delivered the results
described in [4] are shown. It should help the possible
readers to understand the theory on both shooting ap‑
proaches and to write their own codes.

2. The Optimal Control Problem
Let us consider the following optimal control pro‑

blem taken from Jacobson and Lele’s paper [3]:

min
u(.)

∫ 1

0

(
x2
1(t) + x2

2(t) + 0.005u2(t)
)
dt (5)

where for t ∈ [0, 1]

u(t) ∈ R (6)

ẋ1(t) = x2(t), x1(0) = 0 (7)
ẋ2(t) = −x2(t) + u(t), x2(0) = −1 (8)
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x2(t) ≤ 8(t− 0.5)2 − 0.5 (9)
To apply shootingmethods we have to rewrite this

optimization problem as a Mayer problem, introdu‑
cing an additional state variable x3 governed by the
state equation:

ẋ3(t) = x2
1(t) + x2

2(t) + 0.005u2(t), x3(0) = 0
(10)

The objective function (5) will be replaced with

g(x(tf )) = x3(1) (11)

which will be minimized.
So, now our problem has the following form:

min
u(.)

g(x(tf )) = x3(1) (12)

where for t ∈ [0, 1]

u(t) ∈ R (13)

ẋ(t) = f(x(t), u(t)) =

=




x2(t)
−x2(t) + u(t)

x2
1(t) + x2

2(t) + 0.005u2(t)


 (14)

S(x(t), t) = x2(t)− 8(t− 0.5)2 + 0.5 ≤ 0, (15)

with

x(t0) =




0
−1
0


 (16)

3. Direct Multiple Shooting Technique
3.1. Formulation

In the direct approach a control interval is divided
into a certain number of subintervals, on which a Cau‑
chyproblem is solvedby anordinary differential equa‑
tion (ODE) solver. The initial conditions are genera‑
ted iteratively by an optimizer, constraints on state are
checked in the discretization points of the time inter‑
val.

The optimal control problem is transformed into a
nonlinear programming problem [10], [4], [5] through
a parametrization of control u(t) on the subintervals
of the control interval. For example, u(t) may be: pie‑
cewise constant, piecewise linear or higher order po‑
lynomials, linear combination of some basis functions,
e.g. B‑splines. We apply the simplest type of the para‑
metrization: piecewise constant, that is, we take:

t0 < t1 < t2 < . . . tp−1 < tp = tf (17)

u(t) = uk, t ∈ Ik = [tk, tk+1), for k = 0, 1, . . . , p−1
(18)

where uk ∈ R.

x

tt ft 0 t 1 t 2 t 3 t p-1

...

...

boundary conditions

iteration 1

solution

iteration 2

...

Fig. 1. Direct shooting method

The basic idea is to simultaneously integrate nu‑
merically the state equations (14) on the subintervals
Ik for guess initial points

χk = x(tk) (19)

Then the values obtained at the ends of subintervals
‑ we will denote them by x(tk+1;χk, uk) ‑ are compa‑
red with the guesses χk+1. The differential equations,
initial and end points conditions and path constraints
de�ine the constraints of the nonlinear programming
problem, that is the problem (1)‑(4) is replaced with:

min
χ,u

g(χp) (20)

χk+1 − x(tk+1;χk, uk) = 0, k = 0, . . . , p− 1 (21)

χ0 = x0 (22)

S(χk, tk) ≤ 0, k = 0, . . . , p (23)
where x(tk+1;χk, uk) for k = 0, . . . , p − 1 is the solu‑
tion of ODE:

ẋ(t) = f(x(t), uk, t), tk ≤ t ≤ tk+1, (24)

x(tk) = χk, k = 0, . . . , p− 1, (25)
at t = tk+1 (see Fig. 1).

This nonlinear programming problem can be sol‑
ved by any continuous constrained optimization sol‑
ver.
3.2. MATLAB Solution

The problem (12)‑(16) was solved by the direct
shooting method, described in Sec. 3.1, for p = 20
time subintervals of equal length, with the help of two
MATLAB functions: ode45 (ODE solver; medium order
Runge‑Kutta method) and fmincon (constrained non‑
linear multivariable optimization solver). The code
implementing it in MATLAB has the name shooDir.m
and is shown below. There T denotes the array of time
instants, U is an array with (discretized in time) cont‑
rol trajectory, X with state trajectory. The vector z of
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ẋ3(t) = x2
1(t) + x2

2(t) + 0.005u2(t), x3(0) = 0
(10)

The objective function (5) will be replaced with

g(x(tf )) = x3(1) (11)

which will be minimized.
So, now our problem has the following form:

min
u(.)

g(x(tf )) = x3(1) (12)

where for t ∈ [0, 1]

u(t) ∈ R (13)
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decision variables is a concatenation of vectors repre‑
senting, in turn, subsequent guesses of initial values
of state variables at starting points of subintervals and
control, that is:

z = [χ1,0, χ1,1, . . . , χ1,p, χ2,0, χ2,1, . . . , χ2,p,

χ3,0, χ3,1, . . . , χ3,p, u0, u1, . . . , up−1]
T (26)

.
f unc t i on [T,U,X, gopt ]= shooDir ( pval )
%
% Implementation o f the d i r e c t
% shoot ing method
%
% PARAMETERS:
% pval − number o f s u b i n t e r v a l s
% ( e . g . 20)
% T − array o f subsequent time
% po in t s ( i . e . , t imes o f shoots )
% U − t r a j e c t o r y o f optimal c o n t r o l
% ( d i s c r e t i z e d )
% X − s t a t e t r a j e c t o r y
% gopt − optimal va lue
% of o b j e c t i v e func t i on
%
% CALLING:
% >> [T,U,X, gopt ]= shooDir ( pval )
% For example :
% >> [T,U,X, gopt ]= shooDir (20)
%

g l o b a l p Dt U
p = pval ; Dt = 1/p ;
%
% s t a r t i n g po int f o r ( time
% d i s c r e t i z e d ) t r a j e c t o r y
% opt imiza t i on
%
xs = ze ro s (p+1 ,1) ;
us = ze ro s (p , 1 ) ;
z i n i t = [ xs ; xs ; xs ; us ] ;
U= [ ] ;
%
% i n i t i a l c o n d i t i o n s f o r s t a t e
% equat ion
%
Aeq = ze ro s (3 ,4∗ p+3) ;
Aeq (1 , 1 ) = 1 ; Aeq (2 , p+2) = 1 ;
Aeq (3 ,2∗ p+3) = 1 ;
beq = [ 0 ; − 1 ; 0 ] ;
%
% i n e q u a l i t y s t a t e c o n s t r a i n t
% d i s c r e t i z e d in time
%
A=ze ro s (p+1 ,4∗p+3) ;
f o r k=1:p+1

A(k , p+1+k) = 1 ;
b( k ) = 8∗(( k−1)∗Dt−0.5) ^2−0.5;

end
t i c
[ zo , gopt ]= fmincon(@fun , z i n i t , ...

A, b , Aeq , beq , ...
[ ] , [ ] , @nonlcon , ...
opt imset ( ' Display ' , ...
' i t e r ' , ' TolFun ' , 1 . e−4,...
' MaxFunEvals ' ,100000) ) ;

toc
%
% The l i n e s below in t h i s
% func t i on are only f o r output
% purposes ( i n c l ud ing p l o t s )
%
T= [ ] ;
f o r k=1:p+1

T( k ) = Dt∗(k−1) ;
end
f (1 )=f i g u r e ( ) ;
X=[zo ( 1 : p+1) , zo (p+2:2∗(p+1) ) , ...

zo (2∗p+3:3∗(p+1) ) ] ;
h1=p lo t (T,X( : , 1 ) , 'b−− ' , ...

T,X( : , 2 ) , ' g− ' , ...
T, 8 ∗ (T−0.5) .^2 −0.5 , 'm−. ' ) ;

g r i d on
f o r i =1:3

h1 ( i ) . LineWidth=3;
end
h1 (2 ) . Color =[0 0 .6 0 . 3 ] ;
l egend ( 'x_1 ' , 'x_2 ' , 'S (x , t )=0 ' ) ;
x l a b e l ( ' t ' ) ; y l a b e l ( ' x ' ) ;
txt={ 'INFEASIBLE ' , ' ' , ...

' x_2 REGION ' } ;
t ex t ( 0 . 4 , 0 . 8 , txt , ' Color ' , 'm' ) ;
f ( 2 )=f i g u r e ( ) ;
p l o t (T( 1 : end−1) , U, ' LineWidth ' , 3 ) ;
g r i d on ;
legend ( 'u optimal − d i r e c t method '

↪→ ) ;
x l a b e l ( ' t ' ) ; y l a b e l ( 'u ' ) ;

end

func t i on [ c , ceq ]= nonlcon ( z )
%
% The func t i on c a l c u l a t e s
% f o r t r a j e c t o r i e s on subsequent
% s u b i n t e r v a l s the d i s c r e p a n c i e s
% between gue s s e s o f i n i t i a l po in t s
% and the end po in t s o f shoots
% ( from the prev ious guessed po in t s )
%

g l o b a l p Dt U
f o r i =1:3

f o r k=1:p+1
xs ( i , k ) = z ( ( i −1)∗(p+1)+k ) ;

end
end
f o r k=1:p

U( k ) = z (3∗( p+1)+k) ;
end
c = [ ] ; ceq = [ ] ; j =1;
f o r k=1:p

[T,X]=ode45 (@(t , x ) f ( t , x , ...
U( k ) ) , [ ( k−1)∗Dt k∗Dt ] , ...
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Fig. 2. Optimal state trajectories obtained from the
direct shooting method

[ xs (1 , k ) ; xs (2 , k ) ; ...
xs (3 , k ) ] ) ;

f o r i =1:3
ceq ( j ) = X( end , i )−xs ( i , k+1) ;
j=j +1;

end
end

end

func t i on dxdt = f ( t , x , u )
%
% s t a t e t rans fo rmat ion func t i on
% ( rhs o f the s t a t e equat ion ) ;
% here x i n d i c e s denote coo rd ina t e s
%

dxdt = ze ro s (3 , 1 ) ;
dxdt (1 ) = x (2) ;
dxdt (2 ) = −x (2 )+u ;
dxdt (3 ) = x (1)^2+x (2) ^2+0.005∗u^2;

end

func t i on f z=fun ( z )
g l o b a l p

f z = z (3∗( p+1) ) ;
end

The calculationswereperformedonaPCwith Intel
Core i7‑2600K CPU@3.40 GHz processor under MAT‑
LAB R2020b. After about 50 s we obtained the perfor‑
mance index value equal 0.1708. The resulting trajec‑
tories of the state variables x1 and x2 are presented
in Fig. 2, of the state variuable x3 in Fig. 6 and of the
optimal control in Fig. 5.

Analyzing the resulting x2 state variable trajectory
we may see, that it contains one boundary arc. To �ind
its precise course the indirect shootingmethodwill be
used.

4. Indirect Multiple Shooting Technique
4.1. Formulation

In the indirect approach BVP concerns not only
state equations, but also the equations describing ad‑

joint variables η(t). It means, that for an optimal con‑
trol problem, before using a solver, we have to make
a kind of preprocessing on the paper, based on the
appropriate theory [1]. In particular, we have to de‑
termine the number of switching points s, where the
state trajectory enters and leaves the constraint boun‑
dary. The optimal control at a given time instant is a
function of the current value of state and adjoint va‑
riables (i.e., we provide a control law). Only general
formulas should be given, their parameters: Lagrange
multipliers, initial values of adjoint variables, their
jumps and the concrete values of switching points (i.e.,
times) will be the subject of optimization.

The basic idea of the numerical treatment of such
problems by multiple shooting technique is to consi‑
der the switching conditions as boundary conditions
to be satis�ied at some interior multiple shooting no‑
des [6]. Thus, the problem is transformed into a clas‑
sical multipoint BVP [9], [6]:

Determine a piecewise smooth vector function
y(t) = [x(t), η(t)], which satis�ies

ẏ(t) = f(y(t), u(t), t), t0 ≤ t ≤ tf , (27)

u = uk(y(t), t), τk ≤ t < τk+1, k = 0, . . . , s, (28)

y(τ+k ) = hk(y(τ
−
k ), γk), k = 1, . . . , s, (29)

y(t0) =

[
x0

η0

]
(30)

ri(y(tf )) = 0, i = 1, . . . , nf , (31)

r̃k(τk, y(τ
−
k )) = 0, k = 1, ..., s. (32)

In this formulation, η0, γ, τk, k = 1, . . . , s are
unknown parameters of the problem, where the latter
satisfy

t0 =: τ0 < τ1 < τ2 < · · · < τs < τs+1 := tf (33)

The trajectory may possess jumps of size given by Eq.
(29). If a coordinate of y(t) is continuous (as all state
variables), then its hk is identity. The boundary con‑
ditions and the switching conditions are described by
Eqs. (30)‑(32).

In every time stage k the numerical integration
over the interval [τk, τk+1] is done by any conventional
Cauchy problem (aka initial value problem ‑ IVP) ODE
solver with stepsize control. The resulting system of
nonlinear equations (29)‑(32) can be solved numeri‑
cally by a quasinewtonmethod, e.g., from the Broyden
family.

The derivation of optimality conditions for our
problem (12)‑(16) is presented in [4]. They lead to the
following set of equations (here: s = 2, t1 � τ1, t2 �
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τ2):

ẋ1(t) = x2(t) (34)
ẋ2(t) = −x2(t) + u(t) (35)
ẋ3(t) = x2

1(t) + x2
2(t) + 0.005u2(t) (36)

η̇1(t) = 2x1(t) (37)
η̇2(t) = 2x2(t)− η1(t) + η2(t)− µS(t) (38)

where

u(t) =

{
x2(t) + 16(t− 0.5), t ∈ [t1, t2]
100η2(t), t /∈ [t1, t2]

(39)

µS(t) =

{
η2(t)− 0.01 · u(t), t ∈ [t1, t2]
0, t /∈ [t1, t2]

(40)
with

x1(0) = 0 (41)

x2(0) = −1 (42)

x3(0) = 0 (43)

x1(t
+
1 ) = x1(t

−
1 ), x2(t

+
1 ) = x2(t

−
1 ), x3(t

+
1 ) = x3(t

−
1 )

(44)

x1(t
+
2 ) = x1(t

−
2 ), x2(t

+
2 ) = x2(t

−
2 ), x3(t

+
2 ) = x3(t

−
2 )

(45)

η1(t
+
2 ) = η1(t

−
2 ), η2(t

+
2 ) = η2(t

−
2 ) (46)

The junction (jump) conditions will be as follows:

η1(t
+
1 ) = η1(t

−
1 ) (47)

η2(t
+
1 ) = η2(t

−
1 ) + γ (48)

and the �inal ones:

η1(1) = 0 (49)

η2(1) = 0 (50)
The switching (tangency) condition in our problem
has the form:

S(x2(t
−
1 ), t

−
1 ) = x2(t

−
1 )−8(t−1 −0.5)2+0.5 = 0 (51)

4.2. MATLAB Solution
Putting all these things together and expressing

them in the format required by the indirect shooting
method, described in [4], we get a system of nonlinear
equations, with the vector of unknowns:

z = [η10, η20, t1, t2, γ] (52)

to be satis�ied at �inal and switching points, re‑
sulting from the solution of ODEs with time functions:

x1(t), x2(t), x3(t), η1(t), η2(t), de�ined on three inter‑
vals: [0, t1], [t1, t2], [t2, 1], where starting points are de‑
�ined by initial and junction�jump conditions (41)‑
(48). The set of nonlinear equations to be solved was
made of conditions (49)‑(51):

F (z) = Ferr(z) =




S(x2(t
−
1 ), t

−
1 )

η1(1)
η2(1)


 = 0 (53)

This problemwas solved underMATLABwith the help
of two MATLAB functions: ode45 (mentioned above)
and fsolve (a solver of systems of nonlinear equati‑
ons of several variables). The resulting code has the
name shooIndir.m and is presented below:
f unc t i on [T,U,Y, gopt ]= shoo Ind i r
%
% Implementation o f the i n d i r e c t
% shoot ing method
%
% PARAMETERS:
% T − array o f subsequent time
% po in t s o f c o n t r o l i n t e r v a l
% U − t r a j e c t o r y o f optimal c o n t r o l
% ( d i s c r e t i z e d )
% Y − s t a t e and ad j o i n t v a r i a b l e s
% t r a j e c t o r i e s ( d i s c r e t i z e d )
% gopt − optimal va lue
% of o b j e c t i v e func t i on
%
% CALLING:
% >> [T,U,Y, gopt ]= shoo Ind i r
%

g l o b a l TTot YTot

zs =[ 0 ; 0 ; 0 . 3 3 ; 0 . 6 6 ; 1 ] ;
t i c
[ zo , Fo ] = f s o l v e (@ShooF , zs ,

↪→ opt imset ( ' Display ' , ' i t e r ' ) ) ;
T=TTot ; Y=YTot ;
toc
%
% The l i n e s below in t h i s
% func t i on are only f o r output
% purposes ( i n c l ud ing p l o t s )
%
stT=s i z e (T) ;
f o r t =1: stT

i f T( t ) < zo (3 ) | | T( t ) > zo (4 )
U( t )= 100∗Y( t , 5 ) ;
MuS( t )= 0 . ;

e l s e
U( t )= Y( t , 2 ) +16∗(T( t ) −0.5) ;
MuS( t )= Y( t , 5 ) −0.01∗U( t ) ;

end
end
gopt=Y( end , 3 ) ;
f ( 1 )=f i g u r e ( ) ;
h1=p lo t (T, Y( : , 1 ) , 'b−− ' , ...

T, Y( : , 2 ) , ' g− ' , ...
T, 8 ∗ (T−0.5) .^2 −0.5 , 'm−. ' ) ;

f o r i =1:3
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Fig. 2. Optimal state trajectories obtained from the
direct shooting method

[ xs (1 , k ) ; xs (2 , k ) ; ...
xs (3 , k ) ] ) ;

f o r i =1:3
ceq ( j ) = X( end , i )−xs ( i , k+1) ;
j=j +1;

end
end

end

func t i on dxdt = f ( t , x , u )
%
% s t a t e t rans fo rmat ion func t i on
% ( rhs o f the s t a t e equat ion ) ;
% here x i n d i c e s denote coo rd ina t e s
%

dxdt = ze ro s (3 , 1 ) ;
dxdt (1 ) = x (2) ;
dxdt (2 ) = −x (2 )+u ;
dxdt (3 ) = x (1)^2+x (2) ^2+0.005∗u^2;

end

func t i on f z=fun ( z )
g l o b a l p

f z = z (3∗( p+1) ) ;
end

The calculationswereperformedonaPCwith Intel
Core i7‑2600K CPU@3.40 GHz processor under MAT‑
LAB R2020b. After about 50 s we obtained the perfor‑
mance index value equal 0.1708. The resulting trajec‑
tories of the state variables x1 and x2 are presented
in Fig. 2, of the state variuable x3 in Fig. 6 and of the
optimal control in Fig. 5.

Analyzing the resulting x2 state variable trajectory
we may see, that it contains one boundary arc. To �ind
its precise course the indirect shootingmethodwill be
used.

4. Indirect Multiple Shooting Technique
4.1. Formulation

In the indirect approach BVP concerns not only
state equations, but also the equations describing ad‑

joint variables η(t). It means, that for an optimal con‑
trol problem, before using a solver, we have to make
a kind of preprocessing on the paper, based on the
appropriate theory [1]. In particular, we have to de‑
termine the number of switching points s, where the
state trajectory enters and leaves the constraint boun‑
dary. The optimal control at a given time instant is a
function of the current value of state and adjoint va‑
riables (i.e., we provide a control law). Only general
formulas should be given, their parameters: Lagrange
multipliers, initial values of adjoint variables, their
jumps and the concrete values of switching points (i.e.,
times) will be the subject of optimization.

The basic idea of the numerical treatment of such
problems by multiple shooting technique is to consi‑
der the switching conditions as boundary conditions
to be satis�ied at some interior multiple shooting no‑
des [6]. Thus, the problem is transformed into a clas‑
sical multipoint BVP [9], [6]:

Determine a piecewise smooth vector function
y(t) = [x(t), η(t)], which satis�ies

ẏ(t) = f(y(t), u(t), t), t0 ≤ t ≤ tf , (27)

u = uk(y(t), t), τk ≤ t < τk+1, k = 0, . . . , s, (28)

y(τ+k ) = hk(y(τ
−
k ), γk), k = 1, . . . , s, (29)

y(t0) =

[
x0

η0

]
(30)

ri(y(tf )) = 0, i = 1, . . . , nf , (31)

r̃k(τk, y(τ
−
k )) = 0, k = 1, ..., s. (32)

In this formulation, η0, γ, τk, k = 1, . . . , s are
unknown parameters of the problem, where the latter
satisfy

t0 =: τ0 < τ1 < τ2 < · · · < τs < τs+1 := tf (33)

The trajectory may possess jumps of size given by Eq.
(29). If a coordinate of y(t) is continuous (as all state
variables), then its hk is identity. The boundary con‑
ditions and the switching conditions are described by
Eqs. (30)‑(32).

In every time stage k the numerical integration
over the interval [τk, τk+1] is done by any conventional
Cauchy problem (aka initial value problem ‑ IVP) ODE
solver with stepsize control. The resulting system of
nonlinear equations (29)‑(32) can be solved numeri‑
cally by a quasinewtonmethod, e.g., from the Broyden
family.

The derivation of optimality conditions for our
problem (12)‑(16) is presented in [4]. They lead to the
following set of equations (here: s = 2, t1 � τ1, t2 �
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Fig. 3. Optimal trajectories of the state variables x1 and
x2 obtained from the indirect shooting method.
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µS obtained from the indirect shooting method.
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much shorter (1.5 s vs. 50 s).

5. Conclusion
In the paper an optimal control problem with one

state constraint was considered. The proposed so‑
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Fig. 6. Optimal trajectories of the (artificial, representing
the objective function growth) state variable x3

obtained from both direct and indirect shooting
methods

lution procedure consists in the application of two
shooting approaches together: �irst the direct shoot‑
ing method to �ind an approximation of the optimal
control trajectory and then ‑ on the basis of the asses‑
sment of the intervals of the activity of the state con‑
straint, obtained from the direct method and the ana‑
lysis of conditions of optimality ‑ the indirect shoot‑
ing method. The latter may seem quite complicated at
the beginning and it may be dif�icult for the novices to
imagine how to translate them into a computer code.
The two listings of the corresponding, working codes
in MATLAB, given in the paper, should help in this.

Both �iles (’shooDir.m’ and ’shooIndir.m’) may be
downloaded from the author’s Web page: http://
www.ia.pw.edu.pl/~karbowsk/shooting.
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h1 ( i ) . LineWidth=3;
end
h1 (2 ) . Color =[0 0 .6 0 . 3 ] ;
g r i d on ;
legend ( 'x_1 ' , 'x_2 ' , 'S (x , t )=0 ' ) ;
x l a b e l ( ' t ' ) ; y l a b e l ( ' x ' ) ;
txt={ 'INFEASIBLE ' , ' ' , ...

' x_2 REGION ' } ;
t ex t ( 0 . 4 , 0 . 8 , txt , ' Color ' , 'm' ) ;

f ( 2 )=f i g u r e ( ) ;
h2=p lo t (T, Y( : , 4 ) , ' r− ' , ...

T, Y( : , 5 ) , 'b−− ' , ...
T, MuS' , ' g−. ' ) ;

h2 (3 ) . Color =[0 0 .6 0 . 3 ] ;
g r i d on ;
legend ( ' \eta_1 ' , ' \eta_2 ' , ' \mu_S ' ) ;
x l a b e l ( ' t ' ) ; y l a b e l ( ' \ eta , \mu_S ' ) ;
f o r i =1:3

h2 ( i ) . LineWidth=3;
end

f (3 )=f i g u r e ( ) ;
p l o t (T, U, ' LineWidth ' , 3 ) ;
g r i d on ;
legend ( 'u optimal − i n d i r e c t

↪→ method ' ) ;
x l a b e l ( ' t ' ) ; y l a b e l ( 'u ' ) ;

end

func t i on Ferr=ShooF ( z )
%
% The func t i on c a l c u l a t e s l h s
% o f the u l t imate s e t o f ( s t a t i c )
% non l inea r equat ions :
% Ferr ( z )=0
%

g l o b a l TTot YTot

eT10 = z (1) ;
eT20 = z (2) ;
t1 = z (3) ;
t2 = z (4) ;
gamma = z (5) ;
TTot = [ ] ; YTot = [ ] ;
%
% Region 1 ( s t a t e c o n s t r a i n t
% i n a c t i v e )
%
[T,Y]=ode45 (@(t , y ) f ( t , y , 1 ) , ...

[ 0 t1 ] , ...
[ 0 ; −1; 0 ; eT10 ; eT20 ] ) ;

TTot = T; YTot = Y;
x11 = Y( end , 1 ) ;
x21 = Y( end , 2 ) ;
x31 = Y( end , 3 ) ;
eT11 = Y( end , 4 ) ;
eT21 = Y( end , 5 ) ;
x2b1 = 8∗( t1 −0.5) ^2−0.5;
Ferr (1 ) = x21−x2b1 ;
%

% Region 2 ( s t a t e c o n s t r a i n t
% a c t i v e )
%
[T,Y]=ode45 (@(t , y ) f ( t , y , 2 ) , ...

[ t1 t2 ] , ...
[ x11 ; x21 ; x31 ; ...
eT11 ; eT21+gamma ] ) ;

TTot =[TTot ; T ] ; YTot =[YTot ; Y ] ;
x12 = Y( end , 1 ) ;
x22 = Y( end , 2 ) ;
x32 = Y( end , 3 ) ;
eT12 = Y( end , 4 ) ;
eT22 = Y( end , 5 ) ;
%
% Region 3 ( s t a t e c o n s t r a i n t
% i n a c t i v e )
%
[T,Y]=ode45 (@(t , y ) f ( t , y , 3 ) , ...

[ t2 1 ] , ...
[ x12 ; x22 ; x32 ; ...
eT12 ; eT22 ] ) ;

TTot =[TTot ; T ] ; YTot =[YTot ; Y ] ;
Ferr (2 ) = Y( end , 4 ) ;
Ferr (3 ) = Y( end , 5 ) ;

end

func t i on dydt = f ( t , y , r eg i on )
%
% extended s t a t e t rans fo rmat ion
% func t i on ( rhs o f the 1 s t order
% ODE in s t a t e and ad j o i n t
% v a r i a b l e s space ) ;
% here : y=[x1 , x2 , x3 , eta1 , eta2 ]
%

dydt = ze ro s (5 , 1 ) ;
dydt (1 ) = y (2) ;
switch reg i on

case {1 , 3}
u = 100∗y (5 ) ;
muS = 0 ;

case 2
u = y (2) +16∗(t −0.5) ;
muS = y (5) −0.01∗u ;

end
dydt (2 ) = −y (2)+u ;
dydt (3 ) = y (1)^2+y (2) ^2+0.005∗u^2;
dydt (4 ) = 2∗y (1 ) ;
dydt (5 ) = 2∗y (2 )−y (4 )+y (5)−muS;

end

The calculations tookonly about 1.5 s, the obtained
optimal value of the performance index was 0.1698.
The resulting state x1, x2 and adjoint variables η1, η2
trajectories are presented in Figs. 3‑4, and the optimal
control u and state variable x3 trajectories obtained
frombothmethods are depicted, respectively, in Fig. 5,
and 6. Onemay see, that indeed, the solution delivered
by the indirect shooting method is muchmore precise
than that of the direct one, despite that the number of
unknowns in the indirect method was much smaller
than the dimension of the decision vector in the di‑
rectmethod (5 vs. 83) and the time of calculationswas
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Fig. 3. Optimal trajectories of the state variables x1 and
x2 obtained from the indirect shooting method.
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µS obtained from the indirect shooting method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

-4

-2

0

2

4

6

8

10

12

14

16

u

u optimal - direct method
u optimal - indirect method

Fig. 5. Optimal control trajectories obtained from both
direct and indirect shooting methods

much shorter (1.5 s vs. 50 s).

5. Conclusion
In the paper an optimal control problem with one

state constraint was considered. The proposed so‑
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lution procedure consists in the application of two
shooting approaches together: �irst the direct shoot‑
ing method to �ind an approximation of the optimal
control trajectory and then ‑ on the basis of the asses‑
sment of the intervals of the activity of the state con‑
straint, obtained from the direct method and the ana‑
lysis of conditions of optimality ‑ the indirect shoot‑
ing method. The latter may seem quite complicated at
the beginning and it may be dif�icult for the novices to
imagine how to translate them into a computer code.
The two listings of the corresponding, working codes
in MATLAB, given in the paper, should help in this.

Both �iles (’shooDir.m’ and ’shooIndir.m’) may be
downloaded from the author’s Web page: http://
www.ia.pw.edu.pl/~karbowsk/shooting.
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h1 ( i ) . LineWidth=3;
end
h1 (2 ) . Color =[0 0 .6 0 . 3 ] ;
g r i d on ;
legend ( 'x_1 ' , 'x_2 ' , 'S (x , t )=0 ' ) ;
x l a b e l ( ' t ' ) ; y l a b e l ( ' x ' ) ;
txt={ 'INFEASIBLE ' , ' ' , ...

' x_2 REGION ' } ;
t ex t ( 0 . 4 , 0 . 8 , txt , ' Color ' , 'm' ) ;

f ( 2 )=f i g u r e ( ) ;
h2=p lo t (T, Y( : , 4 ) , ' r− ' , ...

T, Y( : , 5 ) , 'b−− ' , ...
T, MuS' , ' g−. ' ) ;

h2 (3 ) . Color =[0 0 .6 0 . 3 ] ;
g r i d on ;
legend ( ' \eta_1 ' , ' \eta_2 ' , ' \mu_S ' ) ;
x l a b e l ( ' t ' ) ; y l a b e l ( ' \ eta , \mu_S ' ) ;
f o r i =1:3

h2 ( i ) . LineWidth=3;
end

f (3 )=f i g u r e ( ) ;
p l o t (T, U, ' LineWidth ' , 3 ) ;
g r i d on ;
legend ( 'u optimal − i n d i r e c t

↪→ method ' ) ;
x l a b e l ( ' t ' ) ; y l a b e l ( 'u ' ) ;

end

func t i on Ferr=ShooF ( z )
%
% The func t i on c a l c u l a t e s l h s
% o f the u l t imate s e t o f ( s t a t i c )
% non l inea r equat ions :
% Ferr ( z )=0
%

g l o b a l TTot YTot

eT10 = z (1) ;
eT20 = z (2) ;
t1 = z (3) ;
t2 = z (4) ;
gamma = z (5) ;
TTot = [ ] ; YTot = [ ] ;
%
% Region 1 ( s t a t e c o n s t r a i n t
% i n a c t i v e )
%
[T,Y]=ode45 (@(t , y ) f ( t , y , 1 ) , ...

[ 0 t1 ] , ...
[ 0 ; −1; 0 ; eT10 ; eT20 ] ) ;

TTot = T; YTot = Y;
x11 = Y( end , 1 ) ;
x21 = Y( end , 2 ) ;
x31 = Y( end , 3 ) ;
eT11 = Y( end , 4 ) ;
eT21 = Y( end , 5 ) ;
x2b1 = 8∗( t1 −0.5) ^2−0.5;
Ferr (1 ) = x21−x2b1 ;
%

% Region 2 ( s t a t e c o n s t r a i n t
% a c t i v e )
%
[T,Y]=ode45 (@(t , y ) f ( t , y , 2 ) , ...

[ t1 t2 ] , ...
[ x11 ; x21 ; x31 ; ...
eT11 ; eT21+gamma ] ) ;

TTot =[TTot ; T ] ; YTot =[YTot ; Y ] ;
x12 = Y( end , 1 ) ;
x22 = Y( end , 2 ) ;
x32 = Y( end , 3 ) ;
eT12 = Y( end , 4 ) ;
eT22 = Y( end , 5 ) ;
%
% Region 3 ( s t a t e c o n s t r a i n t
% i n a c t i v e )
%
[T,Y]=ode45 (@(t , y ) f ( t , y , 3 ) , ...

[ t2 1 ] , ...
[ x12 ; x22 ; x32 ; ...
eT12 ; eT22 ] ) ;

TTot =[TTot ; T ] ; YTot =[YTot ; Y ] ;
Ferr (2 ) = Y( end , 4 ) ;
Ferr (3 ) = Y( end , 5 ) ;

end

func t i on dydt = f ( t , y , r eg i on )
%
% extended s t a t e t rans fo rmat ion
% func t i on ( rhs o f the 1 s t order
% ODE in s t a t e and ad j o i n t
% v a r i a b l e s space ) ;
% here : y=[x1 , x2 , x3 , eta1 , eta2 ]
%

dydt = ze ro s (5 , 1 ) ;
dydt (1 ) = y (2) ;
switch reg i on

case {1 , 3}
u = 100∗y (5 ) ;
muS = 0 ;

case 2
u = y (2) +16∗(t −0.5) ;
muS = y (5) −0.01∗u ;

end
dydt (2 ) = −y (2)+u ;
dydt (3 ) = y (1)^2+y (2) ^2+0.005∗u^2;
dydt (4 ) = 2∗y (1 ) ;
dydt (5 ) = 2∗y (2 )−y (4 )+y (5)−muS;

end

The calculations tookonly about 1.5 s, the obtained
optimal value of the performance index was 0.1698.
The resulting state x1, x2 and adjoint variables η1, η2
trajectories are presented in Figs. 3‑4, and the optimal
control u and state variable x3 trajectories obtained
frombothmethods are depicted, respectively, in Fig. 5,
and 6. Onemay see, that indeed, the solution delivered
by the indirect shooting method is muchmore precise
than that of the direct one, despite that the number of
unknowns in the indirect method was much smaller
than the dimension of the decision vector in the di‑
rectmethod (5 vs. 83) and the time of calculationswas
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