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Abstract: Continuous-curvature paths play an 
important role in the area of driving robots: as vehicles 
usually cannot change the steering angle in zero-time, 
real trajectories must not have discontinuities in the 
curvature profile. Typical continuous-curvature paths 
are thus built of straight lines, arcs and clothoids. Due 
to the geometric nature of clothoids, some questions in 
the area of trajectory planning are difficult the answer 
– usually we need approximations here. In this paper 
we describe a full approach for continuous-curvature 
trajectory planning for mobile robots – it covers 
a maneuver-based planning with Viterbi optimization 
and geometric approximations required to construct the 
respective clothoid trajectories.

Keywords: Mobile Robots, Trajectory Planning, Continu-
ous-curvature Paths, Clothoids

1. Introduction 
Trajectory planning is a fundamental function of 

a mobile robot. When executing tasks such as trans-
porting goods, the robot has to drive complex trajec-
tories that meet certain measures of optimality. For 
this, a cost function may consider driving time, ener-
gy consumption, mechanical wear or buffer distance 
to obstacles. 

Whereas a geometric route planning tried to find 
a line string with minimal costs that does not cut an 
obstacle (with respect to the robot’s driving width), 
the trajectory planning also considers nonholonom-
ic constraints such as curve angles or orientations. 
Non-holonomic constraints prohibit, e.g., to move 
sideways or to rotate the body while driving straight. 
An important constraint is related to curvature: real 
motion systems can change the steering angle and 
thus the current curvature only with finite speed. As 
a result, the change of, e.g., straight driving to driving 
a curve is not possible instantly. The key approach 
to create continuous-curvature trajectory sequences 
is to incorporate clothoid segments – they linearly 
change the curvature and thus are able to, e.g., con-
nect straight driving and arc trajectories.

Fig. 1 shows an example: we see a trajectory se-
quence and the curvature κ of the driving distance s. 
Straight driving (L) have zero and arcs (A) have a con-
stant non-zero curvature. Clothoids (C) have a con-
stant derivate of κ. We are able to create sequences of 
these three primitive trajectories L, A, C without any 
discontinuity in curvature. We could think of more 
complex primitive trajectories that steadily change 
the curvature, however, the clothoid is the most ‘natu-
ral’ trajectory with this property.
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Fig. 1. A continuous-curvature trajectory sequence

We have to face the following challenges when we 
want to compute continuous-curvature paths based 
on clothoids:
•	 The planning complexity increases, when we in-

crease the configuration dimensions. For contin-
uous-curvature paths we have start, target and 
intermediate configurations with four parameters 
(x, y, θ, κ).

•	 We	want	to	consider	arbitrary	cost	functions,	not	
only the length or maximum curvature. Ideally the 
cost function is represented as functional black 
box, queried at runtime to compute cost values. In 
addition, paths have to consider obstacles that al-
ready have been perceived by the robot.

•	 In	contrast	to	straight	driving	and	arcs,	clothoids	
are not described by simple, closed formulas. For 
direct functions (e.g., the position for a driving dis-
tance), there exist well-known approximations. 
For reverse functions (e.g., given a position, what 
is the driving distance to this position) approxima-
tions are often not known. 
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coarse planning of states based on Dynamic Program-
ming, and a fine trajectory planning that connects the 
formerly generated states.

Further work investigated the mathematics behind 
clothoids and characteristics of clothoids in paths. [2] 
discovered an important property: if we only consider 
the path length as costs, then optimal paths may have 
an infinite number of switching points, i.e., points that 
change between different primitive trajectories. Apart 
from trivial paths, sequences with minimal lengths 
may have an infinite number of clothoid arcs. This 
finding is important, because real paths (with a finite 
number of primitive trajectories) are thus usually not 
optimal. This is contrarily to Dubins paths, where we 
do not consider curvature. [2] does not consider ob-
stacles or cost functions other than the length.

[24] minimized the maximum curvature when 
constructing clothoids. Up to a certain point their 
approach provided closed formulas, however, when 
considering the so-called Fresnel integral (see later), 
they switched to approximations with fractions of 
quadratic and cubic polynoms. With this, maneuvers 
of type CA (see later) can be computed. 

[13] focused on certain geometric problems when 
construction clothoids, e.g., clothoids that connect 
circles. They provide approximation functions to 
compute clothoid parameters. [14] approximated 
clothoids by arc splines that are more suitable for 
some geometric questions. Instead of clothoids, also 
cubic spirals or splines were considered [4, 12].

[6] took existing planned trajectory sequences and 
converted them to continuous-curvature sequences. 
The input sequence only contains linear driving and 
turning in place. Their approach: each turn in place 
is transformed to a pair of clothoids that result in the 
same target configuration. This approach has a cer-
tain benefit: planning of the input trajectory sequence 
with the help of turn-in-place trajectories is very sim-
ple, thus this special continuous-curvature sequence 
can efficiently planned as well. However: replacing 
turn in place by clothoids may cause large loops that 
move the robot far away from the planned path. As 
a result, the robot may collide with obstacles.

[22] introduced so-called Simple Continuous Cur-
vature Paths (SCC) and constructed every larger path 
from SCCs. SCCs contain 8 primitive trajectories. In 
our notion they are of type CAC-0LCAC-0 (see later).

An observation: related work either focused on 
short clothoid paths without the consideration of 
different cost functions, or tried to construct a com-
plex paths of a small set of what we later call maneu-
vers. We strongly believe, the cost function may not 
only consider the length or maximum curvature, but 
may be more complex. In particular, we have to deal 
with obstacles and maybe want to integrate a safe-
ty distance to the cost function. We also believe that 
suitable paths may contain numerous combinations 
of primitive trajectories, not only a small set of 
maneuvers.

Our approach to compute continuous-curvature paths 
covers the whole range from basic approximation 
functions up to the overall planning of trajectories. We 
consider arbitrary cost functions, passed as runtime 
function. We use a maneuver approach with Viterbi 
optimization to compute obstacle-free paths with least 
costs. We suggest different runtime-optimized approx-
imations to compute the required clothoid functions. 

2. Related Work
We can split related work in approaches that deal 

with the general problem of trajectory planning and 
specific problems related to continuous-curvature 
trajectory planning. A general approach may also cre-
ate continuous-curvature paths, if the curvature is 
part of the configuration and the derivate of curvature 
can be considered in the planning algorithm.

Early work investigated shortest paths for vehicles 
that are able to drive straight forward and circular 
curves [3, 5, 18]. Without obstacles, we can connect 
two configurations with only three primitive trajecto-
ries, the so-called Dubins paths. Dubins path have dis-
continuities in the curvature as they instantly change 
between left and right arcs or arcs and linear driving.

More related to our approach is work that investi-
gates longer paths that go through an environment of 
obstacles. As the space of possible trajectory sequenc-
es gets very large, probabilistic approaches are a suit-
able method to find at least a suboptimal solution 
[8, 10, 11]. They randomly connect configurations 
by primitive trajectories and are able to search on 
the respective graph to plan an actual path. Further 
work used potential fields [1] or visibility graphs [16]. 
With the help of geometric route planners, the overall 
problem of trajectory planning can be reduced. In [9], 
the route planning step and a local trajectory plan-
ning step are recursively applied.

Random sampling can also be used to improve gen-
erated trajectories. E.g., CHOMP [25] uses function-
al gradient techniques based on Hamiltonian Monte 
Carlo to iteratively improve the quality of an initial 
trajectory. The approach in [15] represented the con-
tinuous-time trajectory as a sample from a Gaussian 
process generated by a linear time-varying stochastic 
differential equation. Then gradient-based optimiza-
tion technique optimizes trajectories with respect to 
a cost function.

Further planning approaches are based on the 
state lattice idea introduced in [17]. State lattices are 
discrete graphs embedded into the continuous state 
space. Vertices represent states that reside on a hyper-
dimensional grid, whereas edges join states by trajec-
tories that satisfy the robot’s motion constraints. The 
original approach is based on equivalence classes for 
all trajectories that connect two states and perform 
inverse trajectory generation to compute the result 
trajectory. [7] introduced a two-step approach, with 
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3. The Trajectory Planning Approach

3.1. The Planning Architecture
The goal is to provide a mechanism to move a ro-

bot from one configuration (x, y, θ, κ) to a target 
configuration, meanwhile holding the constraint of 
continuous curvature. We start with the overall archi-
tecture of the motion planning and execution (Fig. 2).

The application specifies the motion tasks to move 
to a certain target. A target may define only a position, 
but also a target orientation or curvature. The Naviga-
tion component provides a point-to-point route plan-
ning in the workspace. This component does not con-
sider non-holonomic constraints. It computes a line 
string of minimal costs that avoids obstacles.

The Trajectory Planning computes a drivable se-
quence of trajectories between configurations and 
considers non-holonomic constraints. As the Naviga-
tion already detected a collision-free line string, this 
component does not have to check for any trajectory 
sequence between the configurations, but looks for 
trajectories that connect the turning points. This two-
phase approach significantly reduces the overall com-
putation complexity.
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Fig. 2. Planning and execution data flow 

 
Fig. 2. Planning and execution data flow

The Evaluator computes costs of routes and tra-
jectories based on the obstacle map and the desired 
properties. Cost values may take into account the path 
length, expected energy consumption or the amount 
back-driving. Also, the distance to obstacles could be 
considered, if, e.g., we want the robot to keep a safe-
ty distance where possible. As an important decision: 
the planning approach is fully separated from the 
evaluation approach that even may change its behav-
iour at runtime.

The lower components are not focus of this paper: 
the Trajectory Regulation permanently tries to hold 
the planned trajectories, even if the position drifts 
off. Simultaneous Localization and Mapping (SLAM) 
constantly observes the environment and computes 
the most probable own location and location of ob-
stacles by motion feedback and sensors (e.g., Lidar or 
camera). The current error-corrected configuration 

is passed to all planning components. Observed and 
error-corrected obstacle positions are stored in an 
Obstacle Map for further planning tasks. The Motion 
System finally is able to execute and supervise driving 
commands by formalized trajectories. 

3.2. Trajectories and Maneuvers
We now assume the robot drives in the plane in 

a workspace W with positions (x, y). The configura-
tion space C covers additional dimensions for orien-
tation angle θ and curvature κ, i.e., our configuration 
space is of (x, y, θ, κ).

The goal is to find a collision-free sequence of 
trajectories that connects two configurations, mean-
while minimizes a cost function. The overall problem 
has many degrees of freedom. Whereas even small 
distances can be connected by an infinite number of 
trajectories, the problem gets worse for larger envi-
ronments with many obstacles. We thus introduce the 
following concepts:
•	 A route planning solely operates on workspace W 

and computes a sequence of collision-free lines of 
sight (with respect to the robot’s width) that mini-
mize the costs.

•	 As the route planning only computes route points 
in W, we have to specify additional values in C. 
From the infinite assignments, we only consider 
a small finite set.

•	 From the infinite set of trajectories between two 
route configurations, we only consider a finite 
set of maneuvers. Maneuvers are trajectories, for 
which we know formulas that derive the respec-
tive parameters (e.g., curve radii) from start and 
target configurations.

•	 Even though these concepts reduce the problem 
space to a finite set of variations, this set would by 
far be too large for a complete iteration. We thus 
apply a Viterbi-like approach that significantly re-
duces the number of checked variations to find an 
optimum.

We carefully separated the cost function from all 
planning components. We assume there is a mapping 
from a route or trajectory sequence to a cost value ac-
cording to two rules: first, we have to assign a single, 
scalar value to a trajectory sequence that indicates its 
costs. If costs cover multiple attributes (e.g., driving 
time and battery consumption), the cost function has 
to weight these attributes and create a single value. 
Second, a collision with obstacles has to result in in-
finite costs.

The basic capabilities of movement are defined by 
a set of primitive trajectories. The respective set can 
vary between different robots. E.g., the Carbot [21] is 
able to execute the following primitive trajectories:
•	 L(): linear (straight) driving over a distance ;
•	 A(, r): circular arc with radius r over a distance ;
•	 C(, κs, κt): clothoid over a distance  with given 

start and target curvatures.
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Further primitive trajectories may be possible, e.g., to 
turn in place, however, we are only interested in con-
tinuous-curvature trajectories in this paper.

We are able to map primitive trajectories direct-
ly to driving commands that are natively executed 
by the robot’s motion system. Implicitly, they specify 
functions that map two configurations cs to ct. Due to 
non-holonomic constraints, it usually is not possible 
to reverse this mapping. I.e., for given cs, ct∈	C there 
is in general no primitive trajectory that maps cs to ct.

At this point, we introduce maneuvers. Maneuvers 
are small sequences of primitive trajectories (usually 
up to 10 elements) that are able to map between giv-
en cs, ct∈	C. More specifically:
•	 A maneuver is defined by a sequence of primitive 

trajectories (e.g., denoted ALA or LCA) and further 
constraints. Constraints may relate or restrict the 
respective primitive trajectory parameters.

•	 For	given	cs, ct∈	C there exist formulas that specify 
the parameters of the involved primitive trajecto-
ries, i.e.,  for L, A and C, r for A, κs, κt for C.

•	 Usually,	the	respective	equations	are	underdeter-
mined. As a result, multiple maneuvers of a certain 
type (sometimes an infinite number) map cs to ct. 
Thus, we need further parameters we call free pa-
rameters to get a unique maneuver.

•	 We	further	have	maneuvers	that	do	not	consider	
all start and target configuration parameters. E.g., 
some maneuvers drive to a certain target position, 
but the target orientation cannot be specified be-
forehand. We call the specified configuration pa-
rameters for a maneuver start and target param-
eters. At least (x, y, θ) must be start parameters 
and workspace dimensions (x, y) must be target 
parameters. In addition, continuous-curvature 
maneuvers must accept (x, y, θ, κ) as start param-
eters.
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(0C C-0

0C C-0)

Clotho-ACL-nodir
(A C0 L)

C- -Clothoid-Arcs
(C0

0C C-0 L 0C C-0)

C-Wing-Clothoid-Arc
(C0 L 0C C-0 L)

Clotho-0C
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(A C0 L 0C A)
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0C C-0
0C C-0)

Clotho-C00C
(C0

0C)  
Fig. 3. Sample continuous-curvature maneuvers

Until now we identified about thirty maneuvers. 
Fig. 3 shows ten of them that support continuous-cur-
vature paths. The challenge is to set up formulas for the 
trajectory parameters. For the non-continuous curva-
ture planning, the formulas usually are a result of solv-
ing a linear or quadratic equation system – for all we 

get closed solutions. For continuous-curvature plan-
ning, however, we have clothoid functions that results 
in approximations. We come back to this point later.

3.3. Notation of Maneuvers
In order to systematically describe the numerous 

maneuvers, we introduced a special notation. This is 
not only useful to precisely describe the maneuver’s 
structure to developers – is can be used to check basic 
properties without to know the underlying formulas. 
These checks cover:
•	 Checks when constructing maneuvers, whether 

they are properly defined and integrated into the 
overall planning system.

•	 Checks	 that	 support	 the	 developer	 of	 a	 robot-
application to select appropriate maneuvers for 
a certain situation or vehicle.

•	 Runtime	checks,	whether	two	subsequent	maneu-
ver match, i.e., can be driven after each other, while 
certain driving properties are fulfilled.

For this, we developed the notion of structure pat-
terns. They are built from the primitive trajectory (A, L 
and C) and modifiers that set a primitive trajectory in 
relation to its neighbour. Table 1 shows all elements. 
For A we introduced the modifiers A~ and A= that re-
late the arc’s turning orientation to a former arc. This 
is useful to indicate maneuvers that first drive a right 
curve, then left curve or vice versa (A~) or twice right 
or twice left curve (A=).

For clothoids we know more modifiers. First we 
may indicate a zero-curvature at start (0C) or termi-
nation (C0). Second, we may indicate a symmetric 
clothoid as described later in section  4.2 (C-) that also 
may have zero-curvature at termination (C0).

Tab. 1. Maneuver notation elements
Notation Meaning

L Linear

A Arc

A~ Arc with opposite turning orientation to last A

A= Arc with same turning orientation to last A

C Clothoid
0C Clothoid with zero start curvature

C0 Clothoid with zero end curvature

C- Exact symmetric clothoid to last C

C-0
Exact symmetric clothoid to last C with zero end 

curvature

The maneuvers we found so far are listed in Ta-
ble 2. Besides the structure patterns, the table pre-
sents start, target and free parameters. For start pa-
rameters we can distinguish the following cases: 
• (x, y, θ): maneuvers that do not predefine a start 

curvature: such maneuvers usually change the 
curvature at start, thus are not suitable for con-
tinuous curvature planning;

•	 (x, y, θ, 0): maneuvers that assume a zero-curva-
ture at start: such maneuvers can continue a tra-
jectory that ends with zero-curvature;
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•	 (x, y, θ, κ): maneuvers that may continue any tra-
jectory that ends with an arbitrary non-zero cur-
vature.
For target parameters we distinguish (x, y), 

(x, y, θ), (x, y, 0), (x, y, θ, 0), and (x, y, θ, κ). All are suit-
able for inner maneuvers (i.e., accept for the last), 
even for continuous-curvature planning. For the last 
maneuver it depends, whether the application re-
quires that the robot holds a certain orientation and/
or curvature at the target position. E.g., there may be 
a charging station that only can be used with a certain 
robot orientation. It is not likely for an application to 
request a target curvature. However, it could, e.g., be 
required that the steering angles of the wheels must 
be zero when entering the charging station.

We have manifold free parameters. Most are arc 
radii and clothoid lengths. Some free parameters are 
marked with (*): these are a result of transforming 
non-clothoid maneuvers as described in section  4.2.

The penultimate column of Table 2 indicates 
whether the connected primitive trajectories have 
a continuous-curvature. These are single trajectory 
maneuvers (e.g., only an A) or each pair of subse-
quent trajectories are of AC, AC0, L0C, C0L, C-0L, CC-, 
0CC-0, or C0

0C. For continuous-curvature planning 
(last column) we further require both to have a con-
tinuous-curvature maneuver and start parameters 
that cover the curvature (0 or κ).

Tab. 2. Maneuvers

Name
Structure 

Pattern
Start

Params
Target 

Params
Free 

Params
Continuous 
Curvature

Suitable for 
Continuous 
Curvature 
Planning

C-Bow A (x, y, θ) (x, y) - yes

Clothoid-Bow C C- (x, y, θ) (x, y) - yes

J-Bow L A (x, y, θ, 0) (x, y, θ) -

J-Clothoid-Bow L 0C C-0 (x, y, θ, 0) (x, y, θ, 0) - yes yes

C-J-Clothoid-Bow C0 L 0C C-0 (x, y, θ, κ) (x, y, θ, 0)
 of 1st C yes yes

J-Bow2 A L (x, y, θ) (x, y, θ, 0) -

J-Clothoid-Bow2 0C C-0 L (x, y, θ, 0) (x, y, θ, 0) - yes yes

C-J-Clothoid-Bow2 C0 
0C C-0 L (x, y, θ, κ) (x, y, θ, 0)

 of 1st C yes yes

∫-Arcs A L A (x, y, θ) (x, y, θ) r1 of 1st arc, r2 of 2nd A

∫-Clothoid-Arcs 0C C-0 L 0C C-0 (x, y, θ, 0) (x, y, θ, 0) r1 of 1st A, r2 of 2nd A (*) yes yes

C-∫-Clothoid-Arcs C0 0C C-0 L 0C C-0 (x, y, θ, κ) (x, y, θ, 0)
 of 1st C, r1 of 1st A, r2 of 2nd A (*) yes yes

Arcarc A A= (x, y, θ) (x, y, θ) r1 of 1st A, r2min... r2max of 2nd A

Clothoid-Arcarc 0C C-0 
0C C-0 (x, y, θ, 0) (x, y, θ, 0) r1 of 1st A, r2min... r2max of 2nd A (*) yes yes

S-Arcs A A~ (x, y, θ) (x, y, θ) -

S-Clothoid-Arcs 0C C-0 
0C C-0 (x, y, θ, 0) (x, y, θ, 0) - yes yes

Wing-Arc L A L (x, y, θ, 0) (x, y, θ, 0) r of A

Wing-Clothoid-Arc L 0C C-0 L (x, y, θ, 0) (x, y, θ, 0) r of A (*) yes yes

C-Wing-Clothoid-Arc C0 L 0C C-0 L (x, y, θ, κ) (x, y, θ, 0)
 of 1st C, r of A (*) yes yes

Snake A A~ L (x, y, θ) (x, y, θ, 0) r of 1st A (=r of 2nd A)

Snake-Clothoid-Arcs 0C C-0 0C C-0 L (x, y, θ, 0) (x, y, θ, 0) r of 1st A (=r of 2nd A) (*) yes yes

Snake2 L A A~ (x, y, θ, 0) (x, y, θ) r of 1st A (=r of 2nd A)

Snake2-Clothoid-Arcs L 0C C-0 0C C-0 (x, y, θ, 0) (x, y, θ, 0) r of 1st A (=r of 2nd A) (*) yes yes

Dubins-Arcs A A~ A~ (x, y, θ) (x, y, θ) r of 1st A (=r of 2nd and 3rd A)

Dubins-Clothoid-Arcs
0C C-0 

0C C-0 
0C C-0

(x, y, θ, 0) (x, y, θ, 0) r of 1st A (=r of 2nd and 3rd A) (*) yes yes

Clotho-0C 0C (x, y, θ, 0) (x, y) - yes yes

Clotho-C00C C0 0C (x, y, θ, κ) (x, y)
 of 1st C yes yes

Clotho-C C (x, y, θ, κ) (x, y) yes yes

Clotho-CL C0 L (x, y, θ, κ) (x, y, 0) yes yes

Clotho-ACL-nodir A C0 L (x, y, θ, κ) (x, y, 0) yes yes

Clotho-ACL A C0 L (x, y, θ, κ) (x, y, θ, 0) yes yes

Clotho-LCA L 0C A (x, y, θ, 0) (x, y, θ, κ) yes yes

Clotho-CLCA C0 L 0C A (x, y, θ, κ) (x, y, θ, κ)
 of 1st C yes yes

Clotho-ACLCA A C0 L 0C A (x, y, θ, κ) (x, y, θ, κ) yes yes
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3.4. Finding Optimal Maneuver Sequences
Our planning approach both covers non-contin-

uous and continuous-curvature trajectory planning. 
Here, we describe the latter case. We start from a con-
figuration (xs, ys, θs, κs) and plan to a target (xt, yt, θt, κt), 
whereas θt and/or κt may also be * for ‘any target ori-
entation or curvature (resp.) may be suitable’. 

Let	Π	denote	 the	set	of	maneuvers	 that	are	suita-
ble for continuous-curvature planning as described 
in Table 2. Let P(M) for an M∈Π	 be	 the	 start,	 target	
and free parameters. M(p) for p∈P(M) denotes a con-
crete maneuver, i.e., a specific sequence of trajectories 
between given configurations. Consider M(p) to be 
a maneuver instance according to a maneuver class M.

Let (xs, ys) = (x1, y1), (x2, y2), …, (xn, yn) = (xt, yt) de-
note a collision-free route found by the Navigation 
component (Fig. 2). Our problem is to find a valid se-
quence (Mi(pi)) of maneuvers. Valid means:
•	 M1(p1) starts with the configuration (xs, ys, θs, κs) 

and Mn(pn) terminates with (xs, ys, θs, κs);
•	 Mi(pi) connect the positions (xi, yi), (xi+1, y i+1);
•	 Mi(pi) and Mi+1(pi+1) match at the connection point 

(xi+1, y i+1), i.e., they have the same orientation θ i+1 
and curvature κ i+1.

From all valid sequences, we look for an optimal se-
quence, whereas optimality was assessed by the Eval-
uator component (Fig. 2) that provides an evaluation 
function costs(Mi(pi)). The problem is a typical optimi-
zation problem: we look for

 
Π −∈ ∈

=
1( ) , ( ),

( ( )) is valid

, argmin ( ( ))
n

j j j
i j

i i j j
M p P M
M p

M p costs M p

 

(1)

The	set	Π	is	finite,	moreover	small,	thus	we	could	
consider to iterate over all (Mj)	∈	Πn-1. However, even 
for small n, the total number of possible combinations 
is	 getting	 very	 large.	 E.g.,	 for	 |Π|	=	22	 (Table	 2)	 and	
n =10 route points we get more than a billion pos-
sible sequences of (Mj). Maneuver parameters (e.g., 
orientation and curvature of inner routing points) 
are even more crucial, as P(Mj) are continuous values 
with a large number of dimensions. Moreover, there is 
no close relation of nearby values of P(Mj) and the re-
sulting costs value, i.e., even slightest modifications of 
parameters may significantly change the costs. Thus, 
optimization approaches as hill climbing or simulated 
annealing will fail.

Our approach [19] is inspired by the Viterbi algo-
rithm [23]. The basic ideas:
•	 Of the infinite number of maneuver parameters 

we define a finite set of promising candidates. This 
obviously leads to sub-optimal results, however, 
opens the possibility to use a discrete optimiza-
tion approach.

•	 We do not try to optimize all maneuvers at once, 
what would lead to a huge number of variations. 
Instead, we locally optimize two maneuvers that 
are connected by a route point. 
This approach is suitable, because optimal paths 

have a characteristic: the interference between two 
trajectories in that path depends on their distance. 

If they are close, a change of one usually also causes 
a change of the other. If they are far, we may change 
one trajectory of the sequence, without affecting the 
other. Viterbi reflects this characteristic, as it checks 
all combinations of neighbouring (i.e., close) maneu-
vers to get the optimum.

Fig. 4 illustrates the approach. We begin with the 
route points discovered by Navigation component. 
Step 1 varies orientation θ2 and curvature κ2 of route 
point (x2, y2). For each variation, we look for the best 
maneuver to get there – for this we vary the maneu-
vers and its parameters. As a result we get |θ2i|⋅|κ2j| 
best maneuvers.

Step 2 is the pattern for all further steps. Now, all 
best maneuvers that are collected so far are combined 
with all matching maneuvers to get to (x3, y3), mean-
while varying θ3 and κ3. For short a time the algorithm 
deals with |θ2i|⋅|κ2j|⋅|θ3i|⋅|κ3j| permutations. However 
of these, we only keep the best one for each θ3, κ3. As 
a result, step 2 terminates with |θ3i|⋅|κ3j| best maneu-
ver sequences.

We iterate through all inner route points, mean-
while always keeping a set of current best maneu-
vers. If the target configuration contains orientation 
and curvature, the last step is different, as we do not 
have to vary them. Thus, only a single best maneuver 
remains. If one of orientation and curvature are *, 
then the respective candidate set as selected for inner 
route points is checked.

We finally have to clarify the candidate sets for 
maneuver parameters:

From all valid sequences, we look for an optimal se-
quence, whereas optimality was assessed by the 
Evaluator component (Fig. 2) that provides an evalua-
tion function costs(Mi(pi)). The problem is a typical op-
timization problem: we look for 
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The set  is finite, moreover small, thus we could con-
sider to iterate over all (Mj)n-1. However, even for 
small n, the total number of possible combinations is 
getting very large. E.g., for ||=22 (Table 2) and n=10 
route points we get more than a billion possible se-
quences of (Mj). Maneuver parameters (e.g., orienta-
tion and curvature of inner routing points) are even 
more crucial, as P(Mj) are continuous values with a 
large number of dimensions. Moreover, there is no 
close relation of nearby values of P(Mj) and the re-
sulting costs value, i.e., even slightest modifications of 
parameters may significantly change the costs. Thus, 
optimization approaches as hill climbing or simulated 
annealing will fail. 

Our approach [19] is inspired by the Viterbi algo-
rithm [23]. The basic ideas: 
 Of the infinite number of maneuver parameters we 

define a finite set of promising candidates. This 
obviously leads to sub-optimal results, however, 
opens the possibility to use a discrete optimization 
approach. 

 We do not try to optimize all maneuvers at once, 
what would lead to a huge number of variations. 
Instead, we locally optimize two maneuvers that 
are connected by a route point.  

 
This approach is suitable, because optimal paths have 
a characteristic: the interference between two trajec-
tories in that path depends on their distance. If they 
are close, a change of one usually also causes a change 
of the other. If they are far, we may change one trajec-
tory of the sequence, without affecting the other. Vi-
terbi reflects this characteristic, as it checks all com-
binations of neighbouring (i.e., close) maneuvers to 
get the optimum. 

Fig. 4 illustrates the approach. We begin with the 
route points discovered by Navigation component. 
Step 1 varies orientation 2 and curvature 2 of route 
point (x2, y2). For each variation, we look for the best 
maneuver to get there – for this we vary the maneu-
vers and its parameters. As a result we get |2i||2j| 
best maneuvers. 

Step 2 is the pattern for all further steps. Now, all 
best maneuvers that are collected so far are combined 
with all matching maneuvers to get to (x3, y3), mean-
while varying 3 and 3. For short a time the algorithm 
deals with |2i||2j||3i||3j| permutations. However of 
these, we only keep the best one for each 3, 3. As a 
result, step 2 terminates with |3i||3j| best maneuver 
sequences. 

We iterate through all inner route points, mean-
while always keeping a set of current best maneuvers. 

If the target configuration contains orientation and 
curvature, the last step is different, as we do not have 
to vary them. Thus, only a single best maneuver re-
mains. If one of orientation and curvature are *, then 
the respective candidate set as selected for inner 
route points is checked. 

We finally have to clarify the candidate sets for 
maneuver parameters: 
 For target orientations we consider variations of 

angles from the previous and to the next route 
point. This is suitable, as optimal trajectories 
mainly follow the basic route directions. 

 For arc radii we consider some multipliers of the 
minimum curve radius rmin, e.g., {rmin, 3rmin, 5rmin}. 

 For target curvatures we consider zero and 
reciprocals of candidates for arc radii. 

 Candidates for clothoid lengths are computed from 
the vehicle's maximum curvature change and can-
didates for curvatures.  
 

Note that configuration parameters that depend on 
other maneuver parameters implicitly define candi-
dates for a certain step. E.g., Clotho-0C does not accept 
target orientation and curvature. This means, these 
values depend on other parameters such as start and 
target position. In particular, these parameters are not 
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Fig. 4. Idea of Viterbi optimization of trajectories 
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•	 For target orientations we consider variations of 
angles from the previous and to the next route 
point. This is suitable, as optimal trajectories 
mainly follow the basic route directions.

•	 For	arc	radii	we	consider	some	multipliers	of	the	
minimum curve radius rmin, e.g., {rmin,	3⋅rmin,	5⋅rmin}.

•	 For	target	curvatures	we	consider	zero	and	recip-
rocals of candidates for arc radii.

•	 Candidates	 for	 clothoid	 lengths	 are	 computed	
from the vehicle’s maximum curvature change and 
candidates for curvatures. 
Note that configuration parameters that depend 

on other maneuver parameters implicitly define can-
didates for a certain step. E.g., Clotho-0C does not 
accept target orientation and curvature. This means, 
these values depend on other parameters such as 
start and target position. In particular, these param-
eters are not free. If in one step, such maneuvers are 
selected as best maneuver, the respective parameters 
are implicit candidates for the next step, even though 
not mentioned in the list above. 

4. Clothoid Computations
Continuous-curvature paths require a) primitive 

trajectories with a continuous curvature and b) no 
discontinuity between two subsequent primitive 
trajectories. The curvature κ is defined as change of 
heading angle ϕ over running length s, i.e.,

 

ϕκ = d
ds  

(2)

This means, for linear trajectories we have κ = 0 
and for arcs κ = 1/r. To connect these trajectories 
with constant curvature we further need a type with 
changing curvature. Of the infinite possible trajecto-
ries with changing curvature, clothoids play an impor-
tant role: they have a constant change of curvature 
over running length, i.e., 

 
0( ) = +


ssκ κ ∆κ
 

(3)

for a trajectory length of , curvature κ0 for s = 0	
and curvature (κ0 + ∆κ) for s = . Many formulas for 
clothoids request κ = 0 for s = 0,	i.e.,	

 
( ) ′=′



ssκ ∆κ
 

(4)

To apply (3) instead of (2) we have to use s’ = s + s0 
with s0 = κ0/∆κ. As a result, we can use the simple 
formula (3) and just have to increment the running 
length s by s0.

4.1. Direct Clothoid Functions
Direct clothoid functions map a running length 

s to position (x, y), curvature κ and heading angle ϕ. 
Positions are based on so-called the Fresnel integrals
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For the normalized Euler spiral we set x(s) = C(s) 
and y(s) = S(s). To produce a clothoid with a certain 
curvature	∆κ at running length , we need a factor a
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Fig. 5 shows a clothoid and its values. At a cer-
tain point we have a heading angle and a curvature. 
We may consider the trajectory at this point as an in-
finitely small arc with radius 1/κ.

Fig. 5. A clothoid

Only the formulas for κ and φ can easily be invert-
ed. Moreover, for C(s) and S(s) we only know approx-
imations
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hat do not easily support inverse questions. E.g., for 
given x, y, it is not obvious to get s, a of a clothoid to 
get there. The following sections show how to con-
struct maneuvers with clothoids and how to compute 
clothoid parameters. 

4.2. Replacing Arcs by Symmetric Clothoids
A first idea to construct continuous-curvature 

maneuvers: we take a non-continuous maneuver and 
replace each arc by two symmetric clothoids (0C C-0). 
The replacement starts and terminates with zero cur-
vature, whereas both clothoids are connected by the 
same non-zero curvature. As an example, we can re-
place the J-Bow (L A) by J-Clothoid-Bow (L 0C C-0). If 
the original maneuver had an arc radius as free pa-
rameter, we consider this radius also as free param-
eter for the new maneuver, even though no arc ap-
peared in the maneuver. This was indicated by (*) in 
Table 2.

We assume an arc that starts in x-direction, i.e., 
the arc centre resides on the y-axis. For the general 
case we have to roto-translate our approach to any 
location/orientation. We want to replace the arc with 
angle α by two symmetric clothoids. This means, each 
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clothoid spans an angle of α/2 viewed from the arc 
centre. This also must be the heading angle at the end 
of the first clothoid (Fig. 6).

Of the clothoid we do not know the respective a. 
However, we can benefit from a property of clothoids: 
they only differ in their scaling, but have, apart from 
this, identical shapes. Our approach to compute a is 
as follows: 
•	 We first construct a clothoid with a’ = 1/ 2.
•	 We	compute	s’ to get to φ(s’) = α/2.
•	 We	compute	(x’, y’) for s’.
•	 We	add	a	symmetric	clothoid	and	get	to	(t’x, t’y).
•	 We	compute	an	f with (tx, ty)=f(t’x, t’y) for the former 

arc termination (tx, ty).
•	 We	finally	get	a=1/ 2 f .

Of the clothoid we do not know the respective a. 
However, we can benefit from a property of clothoids: 
they only differ in their scaling, but have, apart from 
this, identical shapes. Our approach to compute a is as 
follows:  
 We first construct a clothoid with a'=1/2. 
 We compute s' to get to (s')=/2. 
 We compute (x', y') for s'. 
 We add a symmetric clothoid and get to (tx', ty'). 
 We compute an f with (tx, ty)=f(tx', ty') for the former 

arc termination (tx, ty). 
 We finally get a=1/(2f). 

 
The idea behind this: we first create a 'test' clothoid 
and append the symmetric clothoid. Typically, we will 
not get to the desired end point. But from the nature 
of all clothoids, the position is only wrong by a scaling 
factor. When we applied the scaling f, we finally get 
the respective a. 
4.3. Maneuvers with Leading Clothoid 
A second approach to create continuous-curvature 
maneuvers is to add a leading clothoid of type C0. An 
existing continuous-curvature maneuver that starts 
with zero curvature (i.e., L or 0C) can be transformed 
to a maneuver that starts with any non-zero curva-
ture. The example is -Clothoid-Arcs (0C C-0 L 0C C-0) 
that is extended to C--Clothoid-Arcs (C0 0C C-0 L 0C 
C-0). 

The construction is as follows: we construct a clot-
hoid that starts with the start curvature and ends with 
zero curvature in any point. As the original maneuver 
already was able to connect any start point with any 
target point, it also is possible to choose the first clot-
hoid's end point as alternative start. However, we get 
an additional free parameter  – the first curvature's 
length. 

With the methods in section 4.2 and this section 
we made use of direct clothoid computations as 
shown in formula (7) and only modified or extended 
existing maneuvers. However, we also wish to directly 
create continuous-curvature maneuvers. For this, we 
need to invert clothoid functions. The following sec-
tions deal with this problem. For most questions re-
lated to inverse clothoid functions, we do not know 
closed formulas. We thus developed numerous ap-

proximations to quickly compute such functions in 
the context of trajectory planning. 
4.4. Running Length and Distance to Given 

Point 
This next question is not actually related to maneuver 
construction, but it is heavily used during plan execu-
tion: given a point (px, py) and a clothoid defined by a. 
What is the running length s to get to (px, py)? As a 
clothoid may not exactly go through (px, py), we extend 
the question: what is the running length s of the near-
est clothoid point? We need this function in the con-
text of motion regulation [20] when we want to check 
if the robot still drives on the planned route and if not, 
what is the current deviation. 

Our approach to compute this function is as fol-
lows: 
 We first only consider the standard clothoid a=1. A 

clothoid is infinitely twisted, but we stop after a 
reasonably running length in the context of trajec-
tory planning, e.g., s=(2). 

 We pre-compute a grid (Fig. 7 left): for each grid 
centre we store the running length s of the nearest 
clothoid point. A grid of 2020 is sufficient. 

 For a position (px, py) we look for the cell with the 
nearest cell centre to (px, py). If the position was 
outside the grid, we use a projection into the grid. 

 The running length s retrieved from the grid is 
only a rough approximation. We thus need a cor-
rection step. 

 

(px, py)

1/


(cx, cy)

 
Fig. 7. Getting the nearest clothoid point 

 
To pre-compute the grid, we iterate through s in a 
fine-grained manner, apply formula (7) and memorize 
in the grid cells, whether a new clothoid point is 
closer than formerly computed clothoid points. This 
pre-computation usually costs only some seconds. 

When using the grid at runtime, we have to face 
the case when a given position is outside. For each of 
the major direction (e.g., x too large) we assume a vir-
tual clothoid centre and linearly project (px, py) to 
border grid cell. 

For a certain cell, we ask for the respective run-
ning length s' of nearest clothoid point. To get a more 
precise s we proceed as follows (Fig. 7 right): 
 From s' we compute (s') and (s') and construct 

an arc with centre (cx, cy) and radius 1/(s'). This 
arc approximates the clothoid in the area of s'. 

r
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Fig. 6. Replacement of arc by two clothoids 

 
Fig. 6. Replacement of arc by two clothoids

The idea behind this: we first create a ‘test’ 
clothoid and append the symmetric clothoid. Typical-
ly, we will not get to the desired end point. But from 
the nature of all clothoids, the position is only wrong 
by a scaling factor. When we applied the scaling f, we 
finally get the respective a.

4.3. Maneuvers with Leading Clothoid
A second approach to create continuous-cur-

vature maneuvers is to add a leading clothoid of 
type C0. An existing continuous-curvature maneu-
ver that starts with zero curvature (i.e., L or 0C) can 
be transformed to a maneuver that starts with any 
non-zero	curvature.	The	example	is	∫-Clothoid-Arcs	
(0C C0 L 0C C-0) that is	extended	to	C-∫-Clothoid-Arcs	
(C0 0C C0 L 0C C0).

The construction is as follows: we construct 
a clothoid that starts with the start curvature and 
ends with zero curvature in any point. As the original 
maneuver already was able to connect any start point 
with any target point, it also is possible to choose the 
first clothoid’s end point as alternative start. Howev-
er, we get an additional free parameter  – the first 
curvature’s length.

With the methods in section  4.2 and this section 
we made use of direct clothoid computations as 
shown in formula (7) and only modified or extended 
existing maneuvers. However, we also wish to direct-
ly create continuous-curvature maneuvers. For this, 
we need to invert clothoid functions. The following 

sections deal with this problem. For most questions 
related to inverse clothoid functions, we do not know 
closed formulas. We thus developed numerous ap-
proximations to quickly compute such functions in 
the context of trajectory planning.

4.4.  Running Length and Distance to Given Point
This next question is not actually related to maneu-

ver construction, but it is heavily used during plan ex-
ecution: given a point (px, py) and a clothoid defined 
by a. What is the running length s to get to (px, py)? 
As a clothoid may not exactly go through (px, py), we 
extend the question: what is the running length s of 
the nearest clothoid point? We need this function in 
the context of motion regulation [20] when we want 
to check if the robot still drives on the planned route 
and if not, what is the current deviation.

Our approach to compute this function is as fol-
lows:
•	 We first only consider the standard clothoid a = 1.	

A clothoid is infinitely twisted, but we stop after 
a reasonably running length in the context of tra-
jectory planning, e.g., s = √(2π).

•	 We	pre-compute	a	grid	(Fig.	7	left):	for	each	grid	
centre we store the running length s of the nearest 
clothoid point. A grid of 20×20 is sufficient.

•	 For	a	position	(px, py) we look for the cell with the 
nearest cell centre to (px, py). If the position was 
outside the grid, we use a projection into the grid.

•	 The	 running	 length	 s retrieved from the grid is 
only a rough approximation. We thus need a cor-
rection step.

 

(px, py)

1/�
�

(cx, cy)

 
Fig. 7. Getting the nearest clothoid point

To pre-compute the grid, we iterate through s in 
a fine-grained manner, apply formula (7) and memo-
rize in the grid cells, whether a new clothoid point is 
closer than formerly computed clothoid points. This 
pre-computation usually costs only some seconds.

When using the grid at runtime, we have to face 
the case when a given position is outside. For each of 
the major direction (e.g., x too large) we assume a vir-
tual clothoid centre and linearly project (px, py) to bor-
der grid cell.

For a certain cell, we ask for the respective run-
ning length s’ of nearest clothoid point. To get a more 
precise s we proceed as follows (Fig. 7 right):
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•	 From s’ we compute φ(s’) and κ(s’) and construct 
an arc with centre (cx, cy) and radius 1/κ(s’). This 
arc approximates the clothoid in the area of s’.

•	 We	cut	the	arc	with	the	line	(cx, cy) – (px, py). From 
this we can compute a more precise s. 

•	 We	can	repeat	 this	 to	 improve	 the	precision,	but	
a single iteration usually is sufficient.
Until now, we assume a=1. For any other value, we 

perform the steps above for (a⋅px, a⋅py) to get the re-
spective running length s/a.

4.5.  Clothoid Through a Given Point with Zero 
Start Curvature 

The next question is: given a (px, py) what is the a of 
a clothoid and running length s to go to this point? We 
need the answer to construct the Clotho-0C maneuver 
(0C). Even though we have two equations and two vari-
ables, the respective equation system contains the func-
tions C and S that prohibit common techniques to solve 
equations. We thus reduce the equations with a single 
function Q that we numerically invert. We define
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We then are able to express the ratio of py and px as
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and finally
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As a result, we now ‘only’ have to invert Q. A first 
problem: Q is periodic, thus we can only invert from 0 
to the first maximum (Fig. 8). For a standard-clothoid 
(a = 1) we only convert up to a running length from 0 
to approx. 2.04 (represents 75% of the spiral turn). 
This is sufficient for trajectory planning requests. 
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Fig. 8. Q function

Second, we have to numerically invert Q. As Q has 
a simple shape, we can use simple techniques. E.g., we 
may sample some hundreds values of Q as pre-com-
puted data points and interpolate to compute any val-
ue of Q-1.

4.6.  Clothoid Through a Given Point with Non-Zero 
Start Curvature 

The approach in the section  4.5 is only applicable 
for start curvature zero. In this section we assume 
a non-zero start curvature. We need this approach 
to construct the Clotho-C maneuver (C). We assume 
a clothoid as presented in formula (3) with start cur-
vature κ0. We have two cases (Fig. 9).

Fig. 9. Two cases of clothoids with start curvature

For a certain κ0 and value a we have two major 
ways to create a clothoid, dependent on the sign of 
∆κ. It distinguishes, whether the turning point κ=0 
appears for increasing or decreasing running length s. 
For a given (px, py) we are thus looking for value a, s 
and	the	sign	of	∆κ of a clothoid that goes through the 
point. 

Our approach to compute these values is as fol-
lows:
•	 We only consider the case κ0=1 and pre-compute 

a grid.
•	 In	the	pre-computation	phase	we	construct	sam-

ple clothoids for different values of a and the two 
cases	for	the	signs	of	∆κ. For each clothoid we iter-
ate through s in a fine-granular manner.

•	 Each	 grid	 element	 holds	 the	 parameters	 of	 the	
clothoid that was the nearest passing the grid cen-
tre (Fig. 10).

Fig. 10. Look-up array

For trajectory planning, the values of a from the 
interval [0.05; 5.0] are reasonable. This is because 
smaller values create very large and larger values 
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very tight spirals. Both are not suitable in the context 
of trajectory planning. Values from s up to 25 are suf-
ficient as larger values create more than one spiral 
‘round’. For our experiments we created a grid with 
cell size of 0.2 with 100×100 cells. We created approx. 
1.7 millions sample clothoids to fill the grid.

For a position (px, py) we first look up clothoid pa-
rameters a’, s’ asking the cell of (px⋅κs, py⋅κs). As this is 
only an approximation, we improve the precision with 
an optimization approach (e.g., downhill simplex). We 
finally get a=a’⋅κs, s=s’⋅κs.

4.7. Clothoid Extended by a Straight Line 
Through a Given Point

Also in continuous-curvature planning we have to 
create maneuvers that span large distances; usually 
we have to integrate an L trajectory for this. A maneu-
ver with single L would require that the start orienta-
tion exactly points to the target position. In practice, 
this never occurs. The most simple continuous-cur-
vature maneuver that uses an L trajectory and starts 
from an arbitrary pose is of type C0L (Clotho-CL). Note 
that this pattern does not support to specify a target 
orientation.

The actual problem is to construct a clothoid that 
points to the target position at κ = 0 (Fig. 11). Our ap-
proach to construct such a clothoid is as follow: we 
first measure the angle of start point to target point. 
We then construct a clothoid with the required start 
curvature that has the respective orientation at κ = 0. 
This can easily be computed using the formulas for κ 
and φ (7).

The required clothoid now has the respective angle 
to create an L trajectory, but the position of κ = 0 is not 
the starting point, thus we miss the target. We use the 
point to again measure the angle to the target, which 
starts from a more suitable position. We again use the 
measured angle to create a more precise clothoid. The 
angle and thus the clothoid position at κ = 0 quickly 
converges, if the target is not too close the clothoid 
turning point. Thus, this approach is only suitable, 
if targets exceed a certain distance. This however is 
reasonable, as this type of maneuver explicitly should 
spawn a larger distance.

4.8. Clothoid Extended by a Straight Line With 
Given Distance

The next question: how to create a maneuver that 
starts from a non-zero curvature and ends with zero 
curvature, when the target orientation is given? 
We assume the structure pattern AC0L (maneuver 
Clotho-ACL or the reverse Clotho-LCA). Fig. 12 illus-
trates the problem.
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given start curvature and value a. We are able to com-
pute δ using formulas (7), but these formulas cannot 
easily be inverted. What we actually need is 
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A first approach already applied in former sec-
tions: as all clothoids are similar apart from the scal-
ing, we only invert δ for a single start curvature κs = 1 
and rescale the results later. Moreover, we do not have 
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finally get an approximation for all start curvatures:

 κδ κ δ− −≈1 1
1( ) ( )s sd d  (16)

If the target angle θt is not given, we can construct 
the maneuver that drives to (xt, yt) with any orienta-
tion. This can be useful for inner route points, when 
we only want to visit the route point whereas the ac-
tual orientation is not of interest (Clotho-ACL-nodir). 
In this case, we do not have to construct a certain d, 
but are interested, how fast the clothoid transforms 
the start curvature to zero. This is expressed by the 
factor d⋅κs. Table 3 shows some values.
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Table 3. Value a for different distance factors
d⋅κs a/κs

1.5 0.3687568411482851

2.0 0.2983815391022415

2.5 0.2550963611370387

3.0 0.21431547506198895

4.0 0.1575822277624827

5.0 0.12540637523181616

Here d⋅κs expresses the speed of curvature change 
and can be adapted to the robot’s properties. 

4.9. Maneuvers Between Non-Zero Curvatures
The most complex continuous-curvature maneuver 
that is not a result of transforming or extending ex-
isting maneuvers has the structure pattern AC0L0CA. 
It	connects	two	configurations	with	non-zero	curva-
tures.

The construction is similar to the AC0L maneuver 
of section  4.8. In contrast to AC0L with given target 
orientation, the orientation of the L trajectory in the 
AC0L0CA is not given. We can consider the orienta-
tion as free parameter. However, it is more suitable to 
express the degree of freedom with the approach of 
fixed values of d⋅κs (Table 3).
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C L
C

A

d
s

(xt, yt, θt, κt)

(xs, ys, θs, κs) 1/κs

1/κt
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t
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Fig. 13. Construction of AC0L0CA maneuvers

Fig. 13 shows the idea. We have two free parame-
ters ds⋅κs and dt⋅κt. For a certain selection we get two 
circles and four tangents (Fig. 13 right) that touch 
these circles. From the four tangents two would 
change to target orientation by 180° – the choice for 
the remaining tangents thus is an additional free (bi-
nary) parameter. 

4.10. Summary of Approaches
In addition to the well-known clothoid computa-

tions in section  4.1, we introduced functions that are 
related to continuous-curvature trajectories.

Table 4 gives an overview of the last sections. 
Some of them reverse clothoid functions with the help 
of pre-computations and subsequent optimizations. 
The applied techniques cover a wide range of meth-
ods as there is no such best approach for all required 
clothoid functions.

Table 4. Clothoid functions

Function Approach Section
Example 

Maneuver

Cont-curve 
maneuver 
creation

replace A by 0CC-0 4.2 J-Clothoid-
Bow

Cont-curve 
maneuver 
creation

append trailing C0 4.3 C-∫-
Clothoid-

Arcs

Nearest 
clothoid point

pre-computed grid, 
correction with arc 

approximation

4.4 all

0C to 
given point

inversion of Q 4.5 Clotho-0C

C to 
given point

pre-computed 
grid, subsequent 

optimization

4.6 Clotho-C

C0L to 
given point

converging L angle 
construction

4.7 Clotho-CL

AC0L to 
given pose

closed formula 
for approximation 
of a, subsequent 

optimization 

4.8 Clotho-
ACL

AC0L0CA to 
given pose

tangents of two 
circles, a values from 

table

4.9 Clotho-
ACLCA

5. Experiments
We implemented the approach on our Carbot ro-

bot (Fig. 14). It has a size of 35 cm x 40 cm x 27 cm 
and a weight of 4.9 kg. It is able to run with a speed 
of 31 cm/s. The wheel configuration allows to inde-
pendently steer two wheels.

 

Fig. 14. The Carbot

For arcs, the different numbers of revolutions of 
the powered front wheels as well as the steering an-
gles of the steered rear wheels are adapted to follow 
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the respective curve geometry. The motion system is 
also able to drive clothoids with a single motion com-
mand – here the servos and revolutions are smoothly 
changed according to the clothoid’s geometry.

We run the experiments in our simulation envi-
ronment that simulates the robot on hardware-level 
[21]. It is very close to the real robot. E.g., the same 
binary code runs on the real robot and simulator. Mo-
tors and sensors are simulated very low-level. E.g., 
the simulated and real motors have the same I2C com-
mand interface. Physical effects such as slippage and 
sensor errors are applied. The benefit of the simula-
tion tool: we can easily construct very large environ-
ments. E.g., we constructed a virtual maze with size of 
50 m × 50 m which the robot has to discover in order 
to find a way out.

In our experiments, we first want to know the per-
formance of our approximation functions (Table 5). 
We measured the time on a i7-4790 CPU, 3.6 GHz. 
Most of the approximations are uncritical concerning 
execution time. The exception is the approach de-
scribed in section 4.6. We investigate that nearly all 
of the time to compute the C trajectory is used by the 
downhill simplex approach to improve the precision 
of a. Fortunately, the approximation is only used to 
construct a single maneuver, the Clotho-C.

Tab. 5. Clothoid function computation times
Function Section Execution time

Nearest clothoid point 4.4 2.78 µs
0C to given point 4.5 2.21 µs

C to given point 4.6 196.1 µs

C0L to given point 4.7 11.5 µs

AC0L to given pose 4.8 17.7 µs

We further tested the continuous-curvature plan-
ning in several scenarios. We constructed different 
environments. A maze generator is able to construct 
mazes with arbitrary size. We also created mixed en-
vironments with different shaped obstacles. In each 
environment the robot is able to perform two tasks:
•	 Exploration and navigation: Here, the environ-

ment is unknown at startup and the robot should 
drive to a certain position. For this, the robot 
plans movement on an incomplete map. During 
movement, the robot explores formerly unknown 
obstacles, thus has to reschedule the movement. 
Driving and rescheduling are alternated, until the 
target is reached.

•	 Only Navigation: here the environment is known, 
either from former exploration or because the 
ground map is provided by the caller. In this case, 
the robot only has to compute a single path and 
drive it.
Fig. 15. shows screenshots of two environments 

(top: a large maze, bottom: a mixed environment). For 
each, the left images show the single plan for a known 
map (only navigation). The right images show some 
steps when the robot tried to move to the target in 
unknown environments (exploration and navigation).

Paths for known environments show very 
fine-granular, smooth and rational trajectories. For 

the case of unknown maps, the robot may unwittingly 
drive to dead-ends. In this case, the robot either may 
drive a U-turn or a turning maneuver. We can see both 
cases. Note that planning turning maneuvers usually 
is not trivial, in particular if we want to have contin-
uous curvatures. The robot has to take into account 
the costs for backdriving compared to the costs for 
a U-turn. As our approach incorporates arbitrary 
costs functions, we are able to penalize trajectories 
that go backwards, as in this case the robot has to 
drive slower. Note that the Viterbi approach is able to 
deal with such situations, even though only pairs of 
connected trajectories are locally optimized.

We finally evaluated the occurrence of our contin-
uous-curvature maneuvers in paths. We measured:
•	 The percentage of a specific maneuver that is se-

lected as best to connect two subsequent (inter-
mediate) configurations (Fig. 16 left). This was 
indicated as ‘best maneuver’ for each step in Fig. 4.

•	 The	percentage	of	a	specific	maneuver	to	appear	
in the finally planned trajectory sequence to a tar-
get (Fig. 16 right).
The histograms are not identical, as the creation 

of the final trajectory is strongly influenced by the se-
lection of near-optimal intermediate configurations. 
In other words: a certain maneuver may have a large 
portion to connect arbitrary configurations (that may 
turned out not to be near-optimal), but a lower por-
tion to connect configurations that appear more often 
in optimal sequences.

An observation: maneuvers that make use of the 
arc replacement (Section  4.2) and leading clothoids 
(Section  4.2) often appear in planned sequences. On 
the other hand, maneuvers that connect non-zero cur-
vatures (Section  4.9) only rarely appear. This however 
is a result of the fact that many of our maneuvers ter-
minate with L, C0 or C-0, i.e., zero curvature.

A further observation: of the computations in Table 
5, the ‘ C to given point’ had worse performance. But 
the respective maneuver Clotho-C only rarely appeared 
both as best maneuver in a optimization step and in 
the planned path. We thus could remove this maneuver 
from the list without serious consequences.

6. Conclusion
Trajectory planning for mobile robots still is 

a non-trivial task. If we additionally request contin-
uous-curvature planning that considers obstacles 
and arbitrary cost functions, we have to face numer-
ous challenges, starting from the actual planning ap-
proach down to approximations that compute the re-
spective trajectory parameters.

There is an infinite number of trajectories that 
connect two configurations and optimal continu-
ous-curvature paths may have an infinite number of 
primitive trajectories. We thus need a simplification 
of the overall problem. We suggest modelling the final 
path by maneuvers, for which we know formulas to 
define the respective geometric parameters. We in-
troduced a set of about twenty continuous-curvature 
maneuvers and provide basic approximations, when-
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Fig. 15. Planned paths in different environments
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ever the underlying clothoid function cannot easily be 
reversed. As an observation: the respective questions 
to find parameters are different between the maneu-
vers and lead to different approximation – we finally 
discovered five methods.

We successfully implemented the approach on 
our Carbot platform. Carbot is able to create continu-
ous-curvature paths to, e.g., get through a large maze.
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