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Abstract:
Path planning is an essential function of the control sy‐
stem of any mobile robot. In this article the path planner
for a humanoid robot is presented. The short description
of an universal control framework and the Motion Ge‐
neration System is also presented. Described path plan‐
ner utilizes a limited number of motions called the Mo‐
tionPrimitives. They are generated byMotionGeneration
System. Four different algorithms, namely the: Informed
RRT, InformedRRTwith randombias, and RRTwith A* like
heuristics were tested. For the last one the version with
biased random function was also considered. All menti‐
oned algorithms were evaluated considering three diffe‐
rent scenarios. Obtained results are described and discus‐
sed.

Keywords: humanoid robot, path planning, rapidly explo‐
ring random tree

1. Introduction
An universal control framework for a humanoid

robots performing various task is proposed. Despite of
many solutions designed for speci�ic robots, universal
and simple but effective framework is still an actual re‑
search topic. Such need was demonstrated by DARPA
Robotics Challenge [6] where humanoid robots were
acting semi–autonomously in disaster scenario, or by
Robo–Cup Soccer Humanoid League [10] where hu‑
manoids were competing with each other.

Essential part of a control system of anymobile ro‑
bot is a path planner. Presented work describes deve‑
loped and tested Motion Generation System (MGS) for
a humanoid robots. Joint trajectories generated by the
Motion Generation System that describe one fragment
of the robot’s motion are called the Motion Primitive.
MotionPrimitive transfers the robot fromone localisa‑
tion to anotherwhilemaintaining the postural balance
and ful�illing the joints constrains for position, velocity
and torque.MGS can either be implemented as on–line
generator, or can be used off–line pre–generating the
gait cycles. Off–linemode reduces the needed for com‑
putational power of a robot controller. However not
every motion can be pre–determined, maneuvering in
dynamic environment cannot be left as an off–line op‑
tion. Path planning can be viewed as a search in a con‑
�iguration space. �or this purpose the search trees are
constructed re�lecting transformations from the initial
to goal con�igurations. TheRapidly–exploringRandom
Trees (RRT) is very popular motion planning method
applied inmobile robots. In thismethod �irst the graph

of possible paths is created and next it is determined a
feasible but not necessarily optimal path between the
initial and �inal localisation. RRT* is the modi�ied RRT
algorithm that aims to obtain the shortest path in a
termof somede�inedmetric. InformedRRT* is themo‑
di�ication of RRT* which behaves as RRT* until a �irst
solution is found. Afterwards is only sampled the sub‑
set of con�igurations de�ined by an admissible heuris‑
tic for possible solution improvement. It uses the heu‑
ristics for shrinking the planning problem only to the
subsets of the original domain [4]. Due to limited num‑
ber of possible movements, the Informed RRT and not
Informed RRT* is used. The difference lies in post pro‑
cessing which can be applied to smooth out generated
tree.

In this work the RRT approach is applied for path
planning considering the obstacles. The Motion Pri‑
mitives are used. Presented case assumes that the ro‑
botwalks on the 2D plane perpendicular to the gravity
vector. Two different methods were analysed: classic
RRT with informed tree and RRT with A*–like heuris‑
tics. Both methods are additionally studied with bia‑
sed towards the goal con�iguration the function is used
to build the tree.

The paper is structured as follows. After discus‑
sing the related works, the path planner description
taking into account the robot tasks (section 3) is given.
Section4describes details of path planningmethod. In
section 5 experimental results demonstrating advan‑
tages of presented approach are presented. At the end
the conclusions are given.

2. Related Work
Path planner usually makes a separate module (or

layer) in a structured (usually hierarchical) control
architectures. In article [11] authors presented the
hierarchical control system for planning and simu‑
lating dynamic motions of a humanoid robots. The
sampling–based motion planning method is here ap‑
plied. Method concerns the motion in limited con‑
�iguration space. The effectiveness of Bi–directional
Rapidly–explored Random Tree approach was proven
even for imposed kinematic/kinodynamic constrains.
By contrast in presentedpublication thepathplanning
consideringdifferent con�iguration space and localisa‑
tion of thewhole robot in the global reference frame is
studied.

Motion planning for humanoid robots (or any wal‑
king robots) is very actual research topic [9], [1]. In ar‑
ticle [1] researchers provide analysis of use different
tree building algorithms: RRT–CONNECT and RRT–
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Fig. 1. Task division into motion primitives

Fig. 2. The structure of Motion Generation System

EXTEND. RRT–CONNECT tries to connect two trees,
one constructed starting from the initial con�igura‑
tion and another one built starting from the goal. In
each the so called sample the modi�ied con�iguration
is checked according to the tree structure. Difference
between RRT–CONNECT and RRT–EXTEND lies in re‑
striction on number of samples (RRT–CONNECT has
no restriction). Proposed algorithms (both cases) ful‑
�illed the expectations but there is still room for im‑
provement. Presented algorithms are not performing
well when initial and �inal con�iguration are close but
the obstacles exist. In this work we analysed 3 diffe‑
rent cases (goal con�igurations)which are of the above
type. Additionally, not only classic Euclidean normas a
distancemeasure (distance between the points in 2–D
plane) is analysed but the converge rate (time of path
evaluation) for �inding best possiblemotion is studied.

The Rapidly‑exploring Random Trees (RRT) [7] is
a very popular motion planning method applied in
mobile robots. Often the methods used for mobile
(wheeled) robots path planning are transferred to the
legged robots. The example are the methods presen‑
ted in [12] and [2], [17]. In [12] the RRT method was
applied for 6‑legged robot. Described in these publi‑
cations algorithms are providing interesting impro‑
vements however they have the drawbacks as well.
In [12] the usermust specify additional inter–mediate

con�igurations what is limiting the automatic path
planning. As studied in [2] an on‑line motion genera‑
tor is still needed to generate additional motions that
were not previously speci�ied. �owever, the algorithm
is quite universal and allows to design collision–free,
kinematically–feasible paths for any shapeof a vehicle.
In presented work the off–line pre–generated Motion
Primitives are used and no additional motion genera‑
tion procedures are needed.

The RRT* algorithm was used for path planning
of a mobile robots [15], [3] and providing a complete
and optimal solution. Unfortunately RRT* is not useful
when the tasks or space is limited (limitedmotion set).
Therefore the RRT* algorithm is not applicable in our
research but RRT–A* is. In article [8] authors introdu‑
ced A–Star(A*) cost function to RRT algorithm. Similar
approach is used in presented method with adapting
it to the known motions set.

Themodi�ied RRTmethod is applied for path plan‑
ning of a humanoid robot in cluttered environment.
The existing state–of–the–art approach is improved
using the limited set ofmotion primitives. After the va‑
lid paths are found additional conditions are applied
for excluding from the tree search the nodes without
the improvement of assumed measure/criterion.

3. General Concept of Path Planning
When designing the path planner the a broader

context must be taken into account. — The user de‑
�ines the task for a humanoid robot. For example the
task can be ”pick an object from the table and place
it on the shelf”. Figure 1 presents scenario for pick–
and–place task divided into motion primitives. In this
case user de�ines the task as a set of smaller sub–
tasks: ”move robot to certain location”, ”pick an ob‑
ject”, ”move robot to another location”, ”place an ob‑
ject” and ”move robot to �inal location”. For simplicity,
Fig.1 is not including the error handling and the optio‑
nal cases, eg. ”object is not available to pick”. The sub–
tasks are further divided intomotionprimitives.While
”pick” and ”place” sub–tasks can be de�ined using pre–
de�ined template, ”move to” sub–tasks signi�icantly
differ from each other thus cannot be de�ined from
template. Moving the robot from one place to another
requires the work of the path planner. The path plan‑
ner should take into account not only obstacles avoi‑
dance but also kinematic constraints of the robot. It
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Fig. 3. Illustration of applied Motion Primitives (left picture) and example of foot placement for selected Motion Primitive
(right picture)

Tab. 1.Motion Primitives used in path planning algorithm. rstart = [0, 0′] and αstart = 0◦

rend[mm] αend[
◦] time [s] steps Vmean[

mm
s ]

1 [60, 0] 0 11.5 2 5.2174
2 [120, 0]′ 0 16.5 3 7.2727
3 [40, 40] 45 36.5 7 1.5498
4 [40,−40] −45 36.5 7 1.5498
5 [50,−30] 30 26.5 5 2.2004
6 [50, 30] −30 26.5 5 2.2004

Fig. 4. Generated map with (left picture) from real scenario (right picture)

should be also possible to modify a path in the real‑
time when an unexpected obstacle appears.

Utilization of motion primitives in path planning
drastically reduces the size of required on‑board me‑
mory and computational demand. Let us consider the
area of 1.6m×2m as our robot environment. The area
is surrounded by walls and the robot is 55cm tall. Co‑
vering the whole environment by RRT is needed ap‑
proximately 2000 edges. Each edge takes from 8s up
to 20s (approximately 14s) to be performed. The sam‑
pling rate of generated motion by MGS is 1kHz. The
robotuses20actuators, the control signal for eachmo‑
tor has resolution of 16 bits.Without optimization and
not utilizingmotion primitives it is needed 2000×14×
1000 × 20 × 16 = 8960000000bits ≈ 1.12TB of sto‑
red data. Not only storing but operating such amount

of data would be the considerable task. Of course such
method of data representation, is not used in real–life
applications. Such simple example illustrates the dis‑
advantage of poorly designedmethods and emphasise
the need for careful selection ofmotion primitives and
demand for the ef�icient motion planning algorithms.

In this work six motion primitives are applied. Just
for those motion primitives 6× 14× 1000× 20× 16 =
3.36MB data are needed. If the motion primitives are
generated off–line they can be stored and then used as
a read–only data. In the path planning, as the Motion
�rimitives the initial and �inal pose are used. These
poses must be de�ined. Moreover the added around
space regions used in collision detection function (a
part of path planning algorithm) must be given. Such
de�initions improve ef�iciency of path planner.
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When generatingmotion primitives the previously
designed and evaluated Motion Generation System
(MGS) [14] and [13] is used. Structure of this system is
presented in �igure 2. Motion Primitives are using the
motion parameters. After planning the feet placements
by Motion Generation System (MGS), the feet transfer
trajectories, trajectories of hands and ZMP reference
trajectory are produced. Basis on reference trajectory
of ZMP (ZeroMoment Point) the CoM (Center ofMass)
trajectory is obtained forwhich the ZMP criterion [16]
is ful�illed. An inverse kinematic problem is solved and
angular trajectories of the joints are obtained. Foot
placements (footsteps) are produced by path planning
algorithm in Trajectories Planner module.

Applied Motion Primitives are presented in Fig.
3. �eft part of �igure presents the available motions.
They are de�ined taking into account the unidirectio‑
nal on–board vision system. Suchmovements are pos‑
sible that the explored �ield of view (Fo�) allows to
detect the obstacles. In the right side of the �igure the
Motion Primitives as the sequence of steps are shown.
The initial (rstart,αstart) and �inal position and orien‑
tation is denoted (rend,αend). For each Motion Primi‑
tive initial and �inal pose of the robot is the same – it
is symmetrical towards the saggital plane of the robot
with holding the feet parallel to each other. This allows
immediately start the next Motion Primitive after the
previous ends.

Mean travelling distance for all Motion Primitives
equals 4.13cm. Radius of acceptable tolerance towards
the goal position is equal to 10cm (it is a bit more than
2 times bigger than the mean distance travelled).

It must be noted that selecting too small number
ofMotion Primitives can cause various problems. First
of all, due to the limited selection of available motions
the overall robot path may become longer in terms of
a distance and time than the path designed usingmore
Motion Primitives. Secondly, in a case of narrow pas‑
sages the motion planning algorithm may not return
a viable path. Finally, with poorly chosen Motion Pri‑
mitives the robot will not reach the goal moving bac‑
kward and forward with crossing but not reaching the
goal.

4. Rapidly Explored Random Tree
Path planning is divided into two steps. First the

tree with speci�ied number of nodes ktree is created.
One node at a time is established as it is presented
in �igure 5 (algorithm 1). Each node represents posi‑
tion and orientation of the robot in environment and
the edge represent motion between two adjacent no‑
des (between two positions). Position is represented
as the vector r which contains x and y coordinate in
2D plane. After building the tree, an optimal path is es‑
tablished by �inding the k–nearest nodes that satisfy
the distance criterion given by Euclidean distanceme‑
asured between qgoal and selected node being nearest
than ε. In our algorithm we assumed that ε = 10cm.
From set of all nodes selected in previous step, the
onewhichhas smallest execution time is selected. This
time is computedas a sumofmotions (edges) fromany

given node to the starting node qstart. All motion exe‑
cution times are presented in table 1.

Fig. 5. Building tree T rooted in qstart by selecting qnear
and adding new node in qnew

Algorithm 1 Algorithm for building tree T
1: procedure BUILDTREE
2: Input: initial con�iguration qstart, number of

nodes ktree, region free from obstacles Qfree, set
of allowable motions∆qmotions

3: Output: Tree T
4: if qstart ∈ Qfree then
5: T.init(qstart)
6: else
7: return INIT_ERROR
8: repeat
9: qrand ← GET _RAND_NODE(Qfree)

10: qnear ← NEAREST _NODE(qrand, T )
11: qnew ← GET _NEXT _MOTION(Qfree,

qnear,∆qmotions)
12: if qnew ∈ Qfree then
13: T .add_vertex(qnew)
14: T .add_edge(qnear, qnew)
15: T.update_tree_info()
16: until T .number_of_nodes()< ktree
17: return T

The core pat of RRT algorithm is selection of three
nodes: qrand, qnear and qnew . When �inding qrand node
two approaches were used: biased and unbiased. Bia‑
sed approach differs from unbiased by returning qgoal
node once each kbias–times function is stimulated. For
large workspace this can be useful especially near the
end of path search (when generated tree is few steps
away from the goal con�iguration). We de�ine con�i‑
guration as the vector q which contains position and
orientation of the robot. The bias reduces unnecessary
randompoints in largeworkspace and focuses on goal
con�iguration.

For selecting qnear node two different approaches
were used: Euclidean distance norm and A*–like heu‑
ristics.

Euclidean distance between two con�igurations qA
and qB is represented by:

eucl_norm(qA, qB) = ||rB − rA|| (1)

where rA and rB are con�iguration positions. The are
described by coordinates of the point located between
two feet. This localisation is prede�ined and is speci�ic
for each motion.
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Fig. 6. Example of generated tree with selected path for informed RRT algorithm. Left figure present tree without qgoal
bias, while right presents the results obtained using the bias

Fig. 7. Example of generated tree path obtained using informed RRT algorithm with A* heuristics. Left figure presents
tree without qgoal bias, while right presents it with the bias

For implementing A*–like heuristics the standard
form of A* algorithm is used:

f(q) = g(q) + h(q) (2)

In this equation g(q) represents the weight of the
path between qstart and q. It is the time needed to exe‑
cute the path from start to the node representing con‑
�iguration q. h(q) is the weight (in terms of time) for
the path segment from the given node describing con‑
�iguration q to the �inal con�iguration qend. In our ap‑
proach theweight h(q) is obtained using the following
formula:

h(q) = eucl_norm(q, qend)/(kmean ∗ Vmeanall) (3)

where Vmeanall is the mean velocity of the robot
along the executed path from qstart to the node repre‑
senting con�iguration q. kmean is theweight parameter
used in f(q) function.

5. Experiments

Presented algorithm was tested in the real scena‑
rio. Figure 4 (right side) presentes the testbed for the
environment with the obstacles. Figure 4 (left side)
is presenting automatically generated map obtained
by vision system with ArUco markers [5]. In our ap‑
plication ArUco markers are used to localize the ob‑
stacles and goal destination. The coordinates of the
point S are [210mm, 205mm]. Goal destinations are:
A, B, C locations A = [521mm, 1404mm], B =
[1589mm, 876mm], C = [1710mm, 1315mm]. Radius
of acceptable tolerance towards the goal position is
rgoal = 10cm.

List of parameters used for generating Motion Pri‑
mitives is given in Table 1. Using these parameters
MGS generates the set of Motion Primitives used in
path planning algorithm.Differentmotions are perfor‑
med with different speed. Comparing Vmean motion
No.1 and No.3 from table 1 it can be seen that wal‑
king straight is faster than walking diagonally. It im‑

5
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Tab. 2. Results of path time execution for analysed algorithm with specified parameters

qgoal metrics kbias tmin tmean tmax nmin nmean nmax

A euclidean 0% 534.5 733.22 1032 131 279 620
A euclidean 25% 528 689.23 955 58 203 613
A A* 0% 522 658.75 834.5 95 442 736
A A* 25% 478 618.55 788 88 342 707
B euclidean 0% 504 706.24 927.5 66 181 453
B euclidean 25% 489.5 674 818 69 155 379
B A* 0% 461.5 641.7 856 107 256 558
B A* 25% 484.5 627.7 831 78 228 432
C euclidean 0% 501 673.4 954 75 168 344
C euclidean 25% 491 659.5 808 44 60 100
C A* 0% 473 625.5 773 85 194 391
C A* 25% 479.5 616.3 735 48 68 134

plies that ”zig–zagging” is more time consuming.
Figure 6 presents the example of generated tree

with selected path for informed RRT algorithm with
(rigth picture) and without (left picture) the bias. In
presented tree, nodes excluded from the search are
marked by crosses and circles. Cross marks the nodes
excluded by time limit, while circle marks nodes with
dead—ends.

Figure 7 presents example of generated tree with
selected path using informed RRT algorithm with A*
heuristics. Right picture presents version with bias
while left without it. The reduced amount of nodes in
the areas which are farther from the goal con�igura‑
tion can be observed. Figure 6 and �igure 7 provide the
visible difference in the path curvature. Path in �igure
7 utilizes faster straight motions.

The experiments are summarized in table 2. Each
test (each row) was performed for ktree = 800 100
times. Goal destinations qgoal are represented in �igure
4 (left picture) as the A,B,C points.

Analyzing the data given in 2 it can be concluded
that the proposed algorithm provides signi�icant re‑
duction of tmin and tmean for generated path. In ma‑
jority of the cases tmax obtained for RRT–A* with bias
was satisfactory. The values of nmin, nmean and nmax

inform with what amount of nodes the connection
with the goal was achieved. The Table is also presen‑
tingwhat ktree should be selected for successful obtai‑
ning of the path from the starting to �inal position. For
all tests ktree = 800 provided the success. While RRT–
A* reducs signi�icantly tmean it requirs bigger number
of nodes in generated tree. This can lead to unsuccess‑
ful path planing result when the indicated path is not
connecting the initial and �inal node. Further analysis
and improvements should focus on this aspect.

6. Conclusion
This article describes the humanoid path plan‑

ning algorithm for cluttered environment. The pre–
generated Motion Primitives are used. The incorpora‑
tion of of path planning algorithm to the control struc‑
ture of is shortly discussed. Keydata of four algorithms

are given and analyzed. Basis on it, it was concluded
that the presented RRT algorithm with A* heuristics
reduces the time needed for executing the path. The
bias function used for generating qrand nodes reduces
the size of the tree used for �inding the path (nmin).
The further work will be considering the variable ro‑
bot orientation in the path planning. It is obviously
useful for the robots performing the rangeof tasks. Ad‑
ditionally, the set of movements for turning the robot
on the spot should be generated.

Although presented algorithm provides viable
path for considered scenario, it is not free of limita‑
tions. First of all, with limited number of Motion Pri‑
mitives (such as in our paper) it is possible that the
viable path will be not delivered e.g. a narrow corri‑
dor case. Secondly, with proposed set of Motion Pri‑
mitives it is not possible to re�ine the path as it can be
done in RRT* algorithm versions. This may be over‑
come either by on‑line generation of the Motion Pri‑
mitives or by introducing more Motion Primitives. Fi‑
nally, a combination of Motion Primitives covering the
short and long distances should be considered. ”Short
length” Motion Primitives provide possibility for �ine
adjustment of the robot position or deliver the mo‑
tion in narrow passages, while the ”long length” Mo‑
tion Primitives should be preferred globally (in open
spaces) what decreases the computational effort.
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